Step |
Hyp |
Ref |
Expression |
1 |
|
dalawlem.l |
|
2 |
|
dalawlem.j |
|
3 |
|
dalawlem.m |
|
4 |
|
dalawlem.a |
|
5 |
|
dalawlem2.o |
|
6 |
|
simp11 |
|
7 |
|
simp12 |
|
8 |
|
simp21 |
|
9 |
|
simp31 |
|
10 |
2 4
|
hlatjcom |
|
11 |
6 8 9 10
|
syl3anc |
|
12 |
|
simp22 |
|
13 |
|
simp32 |
|
14 |
2 4
|
hlatjcom |
|
15 |
6 12 13 14
|
syl3anc |
|
16 |
11 15
|
oveq12d |
|
17 |
16
|
breq1d |
|
18 |
17
|
notbid |
|
19 |
16
|
breq1d |
|
20 |
19
|
notbid |
|
21 |
16
|
breq1d |
|
22 |
21
|
notbid |
|
23 |
18 20 22
|
3anbi123d |
|
24 |
23
|
anbi2d |
|
25 |
7 24
|
mtbid |
|
26 |
|
simp13 |
|
27 |
2 4
|
hlatjcom |
|
28 |
6 9 8 27
|
syl3anc |
|
29 |
2 4
|
hlatjcom |
|
30 |
6 13 12 29
|
syl3anc |
|
31 |
28 30
|
oveq12d |
|
32 |
|
simp33 |
|
33 |
|
simp23 |
|
34 |
2 4
|
hlatjcom |
|
35 |
6 32 33 34
|
syl3anc |
|
36 |
26 31 35
|
3brtr4d |
|
37 |
|
simp3 |
|
38 |
|
simp2 |
|
39 |
1 2 3 4 5
|
dalawlem14 |
|
40 |
6 25 36 37 38 39
|
syl311anc |
|
41 |
6
|
hllatd |
|
42 |
|
eqid |
|
43 |
42 2 4
|
hlatjcl |
|
44 |
6 8 12 43
|
syl3anc |
|
45 |
42 2 4
|
hlatjcl |
|
46 |
6 9 13 45
|
syl3anc |
|
47 |
42 3
|
latmcom |
|
48 |
41 44 46 47
|
syl3anc |
|
49 |
42 2 4
|
hlatjcl |
|
50 |
6 12 33 49
|
syl3anc |
|
51 |
42 2 4
|
hlatjcl |
|
52 |
6 13 32 51
|
syl3anc |
|
53 |
42 3
|
latmcom |
|
54 |
41 50 52 53
|
syl3anc |
|
55 |
42 2 4
|
hlatjcl |
|
56 |
6 33 8 55
|
syl3anc |
|
57 |
42 2 4
|
hlatjcl |
|
58 |
6 32 9 57
|
syl3anc |
|
59 |
42 3
|
latmcom |
|
60 |
41 56 58 59
|
syl3anc |
|
61 |
54 60
|
oveq12d |
|
62 |
40 48 61
|
3brtr4d |
|