Metamath Proof Explorer


Theorem dalem15

Description: Lemma for dath . The axis of perspectivity X is a line. (Contributed by NM, 21-Jul-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem15.m ˙=meetK
dalem15.n N=LLinesK
dalem15.o O=LPlanesK
dalem15.y Y=P˙Q˙R
dalem15.z Z=S˙T˙U
dalem15.x X=Y˙Z
Assertion dalem15 φYZXN

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem15.m ˙=meetK
6 dalem15.n N=LLinesK
7 dalem15.o O=LPlanesK
8 dalem15.y Y=P˙Q˙R
9 dalem15.z Z=S˙T˙U
10 dalem15.x X=Y˙Z
11 eqid LVolsK=LVolsK
12 eqid Y˙C=Y˙C
13 1 2 3 4 7 11 8 9 12 dalem14 φYZY˙ZLVolsK
14 1 dalemkehl φKHL
15 1 dalemyeo φYO
16 1 dalemzeo φZO
17 3 5 6 7 11 2lplnmj KHLYOZOY˙ZNY˙ZLVolsK
18 14 15 16 17 syl3anc φY˙ZNY˙ZLVolsK
19 18 adantr φYZY˙ZNY˙ZLVolsK
20 13 19 mpbird φYZY˙ZN
21 10 20 eqeltrid φYZXN