Metamath Proof Explorer


Theorem dalem22

Description: Lemma for dath . Show that lines c d and P S determine a plane. (Contributed by NM, 2-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem22.o O=LPlanesK
dalem22.y Y=P˙Q˙R
dalem22.z Z=S˙T˙U
Assertion dalem22 φY=Zψc˙d˙P˙SO

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem22.o O=LPlanesK
7 dalem22.y Y=P˙Q˙R
8 dalem22.z Z=S˙T˙U
9 eqid meetK=meetK
10 1 2 3 4 5 9 6 7 8 dalem21 φY=Zψc˙dmeetKP˙SA
11 1 dalemkehl φKHL
12 11 adantr φψKHL
13 1 2 3 4 5 dalemcjden φψc˙dLLinesK
14 1 2 3 4 6 7 dalempjsen φP˙SLLinesK
15 14 adantr φψP˙SLLinesK
16 eqid LLinesK=LLinesK
17 3 9 4 16 6 2llnmj KHLc˙dLLinesKP˙SLLinesKc˙dmeetKP˙SAc˙d˙P˙SO
18 12 13 15 17 syl3anc φψc˙dmeetKP˙SAc˙d˙P˙SO
19 18 3adant2 φY=Zψc˙dmeetKP˙SAc˙d˙P˙SO
20 10 19 mpbid φY=Zψc˙d˙P˙SO