Metamath Proof Explorer


Theorem dalem53

Description: Lemma for dath . The auxliary axis of perspectivity B is a line (analogous to the actual axis of perspectivity X in dalem15 . (Contributed by NM, 8-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
dalem53.m ˙=meetK
dalem53.n N=LLinesK
dalem53.o O=LPlanesK
dalem53.y Y=P˙Q˙R
dalem53.z Z=S˙T˙U
dalem53.g G=c˙P˙d˙S
dalem53.h H=c˙Q˙d˙T
dalem53.i I=c˙R˙d˙U
dalem53.b1 B=G˙H˙I˙Y
Assertion dalem53 φY=ZψBN

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 dalem53.m ˙=meetK
7 dalem53.n N=LLinesK
8 dalem53.o O=LPlanesK
9 dalem53.y Y=P˙Q˙R
10 dalem53.z Z=S˙T˙U
11 dalem53.g G=c˙P˙d˙S
12 dalem53.h H=c˙Q˙d˙T
13 dalem53.i I=c˙R˙d˙U
14 dalem53.b1 B=G˙H˙I˙Y
15 1 2 3 4 5 6 8 9 10 11 12 13 dalem51 φY=ZψKHLcAGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙IY
16 eqid BaseK=BaseK
17 16 4 atbase cAcBaseK
18 17 anim2i KHLcAKHLcBaseK
19 18 3anim1i KHLcAGAHAIAPAQARAKHLcBaseKGAHAIAPAQARA
20 biid KHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RKHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙R
21 eqid G˙H˙I=G˙H˙I
22 20 2 3 4 6 7 8 21 9 14 dalem15 KHLcBaseKGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙IYBN
23 19 22 syl3anl1 KHLcAGAHAIAPAQARAG˙H˙IOYO¬c˙G˙H¬c˙H˙I¬c˙I˙G¬c˙P˙Q¬c˙Q˙R¬c˙R˙Pc˙G˙Pc˙H˙Qc˙I˙RG˙H˙IYBN
24 15 23 syl φY=ZψBN