Metamath Proof Explorer


Theorem dalemdnee

Description: Lemma for dath . Axis of perspectivity points D and E are different. (Contributed by NM, 10-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalem3.m ˙=meetK
dalem3.o O=LPlanesK
dalem3.y Y=P˙Q˙R
dalem3.z Z=S˙T˙U
dalem3.d D=P˙Q˙S˙T
dalem3.e E=Q˙R˙T˙U
Assertion dalemdnee φDE

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalem3.m ˙=meetK
6 dalem3.o O=LPlanesK
7 dalem3.y Y=P˙Q˙R
8 dalem3.z Z=S˙T˙U
9 dalem3.d D=P˙Q˙S˙T
10 dalem3.e E=Q˙R˙T˙U
11 simpr φD=QD=Q
12 1 2 3 4 6 7 dalemqnet φQT
13 12 adantr φD=QQT
14 11 13 eqnetrd φD=QDT
15 1 2 3 4 5 6 7 8 9 10 dalem4 φDTDE
16 14 15 syldan φD=QDE
17 1 2 3 4 5 6 7 8 9 10 dalem3 φDQDE
18 16 17 pm2.61dane φDE