Metamath Proof Explorer


Theorem dalemrot

Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012)

Ref Expression
Hypotheses dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalemc.l ˙=K
dalemc.j ˙=joinK
dalemc.a A=AtomsK
dalemrot.y Y=P˙Q˙R
dalemrot.z Z=S˙T˙U
Assertion dalemrot φKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S

Proof

Step Hyp Ref Expression
1 dalema.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalemc.l ˙=K
3 dalemc.j ˙=joinK
4 dalemc.a A=AtomsK
5 dalemrot.y Y=P˙Q˙R
6 dalemrot.z Z=S˙T˙U
7 1 dalemkehl φKHL
8 1 4 dalemceb φCBaseK
9 7 8 jca φKHLCBaseK
10 1 dalemqea φQA
11 1 dalemrea φRA
12 1 dalempea φPA
13 10 11 12 3jca φQARAPA
14 1 dalemtea φTA
15 1 dalemuea φUA
16 1 dalemsea φSA
17 14 15 16 3jca φTAUASA
18 9 13 17 3jca φKHLCBaseKQARAPATAUASA
19 1 3 4 dalemqrprot φQ˙R˙P=P˙Q˙R
20 1 dalemyeo φYO
21 5 20 eqeltrrid φP˙Q˙RO
22 19 21 eqeltrd φQ˙R˙PO
23 3 4 hlatjrot KHLTAUASAT˙U˙S=S˙T˙U
24 7 14 15 16 23 syl13anc φT˙U˙S=S˙T˙U
25 1 dalemzeo φZO
26 6 25 eqeltrrid φS˙T˙UO
27 24 26 eqeltrd φT˙U˙SO
28 22 27 jca φQ˙R˙POT˙U˙SO
29 simp312 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙Q˙R
30 1 29 sylbi φ¬C˙Q˙R
31 simp313 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙R˙P
32 1 31 sylbi φ¬C˙R˙P
33 1 dalem-clpjq φ¬C˙P˙Q
34 30 32 33 3jca φ¬C˙Q˙R¬C˙R˙P¬C˙P˙Q
35 simp322 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙T˙U
36 1 35 sylbi φ¬C˙T˙U
37 simp323 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙U˙S
38 1 37 sylbi φ¬C˙U˙S
39 simp321 KHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙S˙T
40 1 39 sylbi φ¬C˙S˙T
41 36 38 40 3jca φ¬C˙T˙U¬C˙U˙S¬C˙S˙T
42 1 dalemclqjt φC˙Q˙T
43 1 dalemclrju φC˙R˙U
44 1 dalemclpjs φC˙P˙S
45 42 43 44 3jca φC˙Q˙TC˙R˙UC˙P˙S
46 34 41 45 3jca φ¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S
47 18 28 46 3jca φKHLCBaseKQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙S