Description: Lemma for dath . Rotate triangles Y = P Q R and Z = S T U to allow reuse of analogous proofs. (Contributed by NM, 14-Aug-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dalema.ph | |
|
dalemc.l | |
||
dalemc.j | |
||
dalemc.a | |
||
dalemrot.y | |
||
dalemrot.z | |
||
Assertion | dalemrot | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dalema.ph | |
|
2 | dalemc.l | |
|
3 | dalemc.j | |
|
4 | dalemc.a | |
|
5 | dalemrot.y | |
|
6 | dalemrot.z | |
|
7 | 1 | dalemkehl | |
8 | 1 4 | dalemceb | |
9 | 7 8 | jca | |
10 | 1 | dalemqea | |
11 | 1 | dalemrea | |
12 | 1 | dalempea | |
13 | 10 11 12 | 3jca | |
14 | 1 | dalemtea | |
15 | 1 | dalemuea | |
16 | 1 | dalemsea | |
17 | 14 15 16 | 3jca | |
18 | 9 13 17 | 3jca | |
19 | 1 3 4 | dalemqrprot | |
20 | 1 | dalemyeo | |
21 | 5 20 | eqeltrrid | |
22 | 19 21 | eqeltrd | |
23 | 3 4 | hlatjrot | |
24 | 7 14 15 16 23 | syl13anc | |
25 | 1 | dalemzeo | |
26 | 6 25 | eqeltrrid | |
27 | 24 26 | eqeltrd | |
28 | 22 27 | jca | |
29 | simp312 | |
|
30 | 1 29 | sylbi | |
31 | simp313 | |
|
32 | 1 31 | sylbi | |
33 | 1 | dalem-clpjq | |
34 | 30 32 33 | 3jca | |
35 | simp322 | |
|
36 | 1 35 | sylbi | |
37 | simp323 | |
|
38 | 1 37 | sylbi | |
39 | simp321 | |
|
40 | 1 39 | sylbi | |
41 | 36 38 40 | 3jca | |
42 | 1 | dalemclqjt | |
43 | 1 | dalemclrju | |
44 | 1 | dalemclpjs | |
45 | 42 43 44 | 3jca | |
46 | 34 41 45 | 3jca | |
47 | 18 28 46 | 3jca | |