Metamath Proof Explorer


Theorem dath2

Description: Version of Desargues's theorem dath with a different variable ordering. (Contributed by NM, 7-Oct-2012)

Ref Expression
Hypotheses dathb.b B=BaseK
dathb.l ˙=K
dathb.j ˙=joinK
dathb.a A=AtomsK
dathb.m ˙=meetK
dathb.o O=LPlanesK
dathb.d D=P˙Q˙S˙T
dathb.e E=Q˙R˙T˙U
dathb.f F=R˙P˙U˙S
Assertion dath2 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UD˙E˙F

Proof

Step Hyp Ref Expression
1 dathb.b B=BaseK
2 dathb.l ˙=K
3 dathb.j ˙=joinK
4 dathb.a A=AtomsK
5 dathb.m ˙=meetK
6 dathb.o O=LPlanesK
7 dathb.d D=P˙Q˙S˙T
8 dathb.e E=Q˙R˙T˙U
9 dathb.f F=R˙P˙U˙S
10 simp11 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHLCB
11 simp122 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UQA
12 simp123 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙URA
13 simp121 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UPA
14 11 12 13 3jca KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UQARAPA
15 simp132 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UTA
16 simp133 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UUA
17 simp131 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙USA
18 15 16 17 3jca KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UTAUASA
19 simp11l KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UKHL
20 3 4 hlatjrot KHLQARAPAQ˙R˙P=P˙Q˙R
21 19 11 12 13 20 syl13anc KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UQ˙R˙P=P˙Q˙R
22 simp2l KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UP˙Q˙RO
23 21 22 eqeltrd KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UQ˙R˙PO
24 3 4 hlatjrot KHLTAUASAT˙U˙S=S˙T˙U
25 19 15 16 17 24 syl13anc KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UT˙U˙S=S˙T˙U
26 simp2r KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙US˙T˙UO
27 25 26 eqeltrd KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UT˙U˙SO
28 simp312 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙Q˙R
29 simp313 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙R˙P
30 simp311 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙P˙Q
31 28 29 30 3jca KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙Q˙R¬C˙R˙P¬C˙P˙Q
32 simp322 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙T˙U
33 simp323 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙U˙S
34 simp321 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙S˙T
35 32 33 34 3jca KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U¬C˙T˙U¬C˙U˙S¬C˙S˙T
36 simp332 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UC˙Q˙T
37 simp333 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UC˙R˙U
38 simp331 KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UC˙P˙S
39 36 37 38 3jca KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UC˙Q˙TC˙R˙UC˙P˙S
40 1 2 3 4 5 6 8 9 7 dath KHLCBQARAPATAUASAQ˙R˙POT˙U˙SO¬C˙Q˙R¬C˙R˙P¬C˙P˙Q¬C˙T˙U¬C˙U˙S¬C˙S˙TC˙Q˙TC˙R˙UC˙P˙SD˙E˙F
41 10 14 18 23 27 31 35 39 40 syl323anc KHLCBPAQARASATAUAP˙Q˙ROS˙T˙UO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙UD˙E˙F