Metamath Proof Explorer


Theorem dchrvmasumif

Description: An asymptotic approximation for the sum of X ( n ) Lam ( n ) / n conditional on the value of the infinite sum S . (We will later show that the case S = 0 is impossible, and hence establish dchrvmasum .) (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasumif.f F = a X L a a
dchrvmasumif.c φ C 0 +∞
dchrvmasumif.s φ seq 1 + F S
dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
Assertion dchrvmasumif φ x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasumif.f F = a X L a a
10 dchrvmasumif.c φ C 0 +∞
11 dchrvmasumif.s φ seq 1 + F S
12 dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
13 eqid a X L a log a a = a X L a log a a
14 1 2 3 4 5 6 7 8 13 dchrvmasumlema φ t c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y
15 3 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y N
16 7 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y X D
17 8 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y X 1 ˙
18 10 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y C 0 +∞
19 11 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y seq 1 + F S
20 12 adantr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y y 1 +∞ seq 1 + F y S C y
21 simprl φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y c 0 +∞
22 simprrl φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y seq 1 + a X L a log a a t
23 simprrr φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y y 3 +∞ seq 1 + a X L a log a a y t c log y y
24 1 2 15 4 5 6 16 17 9 18 19 20 13 21 22 23 dchrvmasumiflem2 φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1
25 24 rexlimdvaa φ c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1
26 25 exlimdv φ t c 0 +∞ seq 1 + a X L a log a a t y 3 +∞ seq 1 + a X L a log a a y t c log y y x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1
27 14 26 mpd φ x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1