Metamath Proof Explorer


Theorem dchrvmasumiflem2

Description: Lemma for dchrvmasum . (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasumif.f F = a X L a a
dchrvmasumif.c φ C 0 +∞
dchrvmasumif.s φ seq 1 + F S
dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
dchrvmasumif.g K = a X L a log a a
dchrvmasumif.e φ E 0 +∞
dchrvmasumif.t φ seq 1 + K T
dchrvmasumif.2 φ y 3 +∞ seq 1 + K y T E log y y
Assertion dchrvmasumiflem2 φ x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasumif.f F = a X L a a
10 dchrvmasumif.c φ C 0 +∞
11 dchrvmasumif.s φ seq 1 + F S
12 dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
13 dchrvmasumif.g K = a X L a log a a
14 dchrvmasumif.e φ E 0 +∞
15 dchrvmasumif.t φ seq 1 + K T
16 dchrvmasumif.2 φ y 3 +∞ seq 1 + K y T E log y y
17 1red φ 1
18 fzfid φ x + 1 x Fin
19 7 ad2antrr φ x + d 1 x X D
20 elfzelz d 1 x d
21 20 adantl φ x + d 1 x d
22 4 1 5 2 19 21 dchrzrhcl φ x + d 1 x X L d
23 elfznn d 1 x d
24 23 adantl φ x + d 1 x d
25 mucl d μ d
26 24 25 syl φ x + d 1 x μ d
27 26 zred φ x + d 1 x μ d
28 27 24 nndivred φ x + d 1 x μ d d
29 28 recnd φ x + d 1 x μ d d
30 22 29 mulcld φ x + d 1 x X L d μ d d
31 18 30 fsumcl φ x + d = 1 x X L d μ d d
32 climcl seq 1 + F S S
33 11 32 syl φ S
34 33 adantr φ x + S
35 31 34 mulcld φ x + d = 1 x X L d μ d d S
36 0cnd φ S = 0 0
37 df-ne S 0 ¬ S = 0
38 climcl seq 1 + K T T
39 15 38 syl φ T
40 39 adantr φ S 0 T
41 33 adantr φ S 0 S
42 simpr φ S 0 S 0
43 40 41 42 divcld φ S 0 T S
44 37 43 sylan2br φ ¬ S = 0 T S
45 36 44 ifclda φ if S = 0 0 T S
46 45 adantr φ x + if S = 0 0 T S
47 1 2 3 4 5 6 7 8 9 10 11 12 dchrmusum2 φ x + d = 1 x X L d μ d d S 𝑂1
48 rpssre +
49 o1const + if S = 0 0 T S x + if S = 0 0 T S 𝑂1
50 48 45 49 sylancr φ x + if S = 0 0 T S 𝑂1
51 35 46 47 50 o1mul2 φ x + d = 1 x X L d μ d d S if S = 0 0 T S 𝑂1
52 fzfid φ x + d 1 x 1 x d Fin
53 19 adantr φ x + d 1 x k 1 x d X D
54 elfzelz k 1 x d k
55 54 adantl φ x + d 1 x k 1 x d k
56 4 1 5 2 53 55 dchrzrhcl φ x + d 1 x k 1 x d X L k
57 simpr φ x + x +
58 23 nnrpd d 1 x d +
59 rpdivcl x + d + x d +
60 57 58 59 syl2an φ x + d 1 x x d +
61 elfznn k 1 x d k
62 61 nnrpd k 1 x d k +
63 ifcl x d + k + if S = 0 x d k +
64 60 62 63 syl2an φ x + d 1 x k 1 x d if S = 0 x d k +
65 64 relogcld φ x + d 1 x k 1 x d log if S = 0 x d k
66 61 adantl φ x + d 1 x k 1 x d k
67 65 66 nndivred φ x + d 1 x k 1 x d log if S = 0 x d k k
68 67 recnd φ x + d 1 x k 1 x d log if S = 0 x d k k
69 56 68 mulcld φ x + d 1 x k 1 x d X L k log if S = 0 x d k k
70 52 69 fsumcl φ x + d 1 x k = 1 x d X L k log if S = 0 x d k k
71 30 70 mulcld φ x + d 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k
72 18 71 fsumcl φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k
73 35 46 mulcld φ x + d = 1 x X L d μ d d S if S = 0 0 T S
74 0cn 0
75 39 ad2antrr φ x + d 1 x T
76 ifcl 0 T if S = 0 0 T
77 74 75 76 sylancr φ x + d 1 x if S = 0 0 T
78 30 70 77 subdid φ x + d 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T = X L d μ d d k = 1 x d X L k log if S = 0 x d k k X L d μ d d if S = 0 0 T
79 78 sumeq2dv φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k X L d μ d d if S = 0 0 T
80 30 77 mulcld φ x + d 1 x X L d μ d d if S = 0 0 T
81 18 71 80 fsumsub φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k X L d μ d d if S = 0 0 T = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d if S = 0 0 T
82 31 34 46 mulassd φ x + d = 1 x X L d μ d d S if S = 0 0 T S = d = 1 x X L d μ d d S if S = 0 0 T S
83 ovif2 S if S = 0 0 T S = if S = 0 S 0 S T S
84 33 mul01d φ S 0 = 0
85 84 ifeq1d φ if S = 0 S 0 S T S = if S = 0 0 S T S
86 40 41 42 divcan2d φ S 0 S T S = T
87 37 86 sylan2br φ ¬ S = 0 S T S = T
88 87 ifeq2da φ if S = 0 0 S T S = if S = 0 0 T
89 85 88 eqtrd φ if S = 0 S 0 S T S = if S = 0 0 T
90 83 89 eqtrid φ S if S = 0 0 T S = if S = 0 0 T
91 90 adantr φ x + S if S = 0 0 T S = if S = 0 0 T
92 91 oveq2d φ x + d = 1 x X L d μ d d S if S = 0 0 T S = d = 1 x X L d μ d d if S = 0 0 T
93 74 39 76 sylancr φ if S = 0 0 T
94 93 adantr φ x + if S = 0 0 T
95 18 94 30 fsummulc1 φ x + d = 1 x X L d μ d d if S = 0 0 T = d = 1 x X L d μ d d if S = 0 0 T
96 82 92 95 3eqtrrd φ x + d = 1 x X L d μ d d if S = 0 0 T = d = 1 x X L d μ d d S if S = 0 0 T S
97 96 oveq2d φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d if S = 0 0 T = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d S if S = 0 0 T S
98 79 81 97 3eqtrd φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d S if S = 0 0 T S
99 98 mpteq2dva φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T = x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d S if S = 0 0 T S
100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 dchrvmasumiflem1 φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T 𝑂1
101 99 100 eqeltrrd φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k d = 1 x X L d μ d d S if S = 0 0 T S 𝑂1
102 72 73 101 o1dif φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k 𝑂1 x + d = 1 x X L d μ d d S if S = 0 0 T S 𝑂1
103 51 102 mpbird φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k 𝑂1
104 7 ad2antrr φ x + n 1 x X D
105 elfzelz n 1 x n
106 105 adantl φ x + n 1 x n
107 4 1 5 2 104 106 dchrzrhcl φ x + n 1 x X L n
108 elfznn n 1 x n
109 108 adantl φ x + n 1 x n
110 vmacl n Λ n
111 nndivre Λ n n Λ n n
112 110 111 mpancom n Λ n n
113 109 112 syl φ x + n 1 x Λ n n
114 113 recnd φ x + n 1 x Λ n n
115 107 114 mulcld φ x + n 1 x X L n Λ n n
116 18 115 fsumcl φ x + n = 1 x X L n Λ n n
117 relogcl x + log x
118 117 adantl φ x + log x
119 118 recnd φ x + log x
120 ifcl log x 0 if S = 0 log x 0
121 119 74 120 sylancl φ x + if S = 0 log x 0
122 116 121 addcld φ x + n = 1 x X L n Λ n n + if S = 0 log x 0
123 122 abscld φ x + n = 1 x X L n Λ n n + if S = 0 log x 0
124 123 adantrr φ x + 1 x n = 1 x X L n Λ n n + if S = 0 log x 0
125 3 adantr φ x + 1 x N
126 7 adantr φ x + 1 x X D
127 8 adantr φ x + 1 x X 1 ˙
128 simprl φ x + 1 x x +
129 simprr φ x + 1 x 1 x
130 1 2 125 4 5 6 126 127 128 129 dchrvmasum2if φ x + 1 x n = 1 x X L n Λ n n + if S = 0 log x 0 = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k
131 130 fveq2d φ x + 1 x n = 1 x X L n Λ n n + if S = 0 log x 0 = d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k
132 124 131 eqled φ x + 1 x n = 1 x X L n Λ n n + if S = 0 log x 0 d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k
133 17 103 72 122 132 o1le φ x + n = 1 x X L n Λ n n + if S = 0 log x 0 𝑂1