| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrvmasumif.f |
|
| 10 |
|
dchrvmasumif.c |
|
| 11 |
|
dchrvmasumif.s |
|
| 12 |
|
dchrvmasumif.1 |
|
| 13 |
|
dchrvmasumif.g |
|
| 14 |
|
dchrvmasumif.e |
|
| 15 |
|
dchrvmasumif.t |
|
| 16 |
|
dchrvmasumif.2 |
|
| 17 |
|
1red |
|
| 18 |
|
fzfid |
|
| 19 |
7
|
ad2antrr |
|
| 20 |
|
elfzelz |
|
| 21 |
20
|
adantl |
|
| 22 |
4 1 5 2 19 21
|
dchrzrhcl |
|
| 23 |
|
elfznn |
|
| 24 |
23
|
adantl |
|
| 25 |
|
mucl |
|
| 26 |
24 25
|
syl |
|
| 27 |
26
|
zred |
|
| 28 |
27 24
|
nndivred |
|
| 29 |
28
|
recnd |
|
| 30 |
22 29
|
mulcld |
|
| 31 |
18 30
|
fsumcl |
|
| 32 |
|
climcl |
|
| 33 |
11 32
|
syl |
|
| 34 |
33
|
adantr |
|
| 35 |
31 34
|
mulcld |
|
| 36 |
|
0cnd |
|
| 37 |
|
df-ne |
|
| 38 |
|
climcl |
|
| 39 |
15 38
|
syl |
|
| 40 |
39
|
adantr |
|
| 41 |
33
|
adantr |
|
| 42 |
|
simpr |
|
| 43 |
40 41 42
|
divcld |
|
| 44 |
37 43
|
sylan2br |
|
| 45 |
36 44
|
ifclda |
|
| 46 |
45
|
adantr |
|
| 47 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrmusum2 |
|
| 48 |
|
rpssre |
|
| 49 |
|
o1const |
|
| 50 |
48 45 49
|
sylancr |
|
| 51 |
35 46 47 50
|
o1mul2 |
|
| 52 |
|
fzfid |
|
| 53 |
19
|
adantr |
|
| 54 |
|
elfzelz |
|
| 55 |
54
|
adantl |
|
| 56 |
4 1 5 2 53 55
|
dchrzrhcl |
|
| 57 |
|
simpr |
|
| 58 |
23
|
nnrpd |
|
| 59 |
|
rpdivcl |
|
| 60 |
57 58 59
|
syl2an |
|
| 61 |
|
elfznn |
|
| 62 |
61
|
nnrpd |
|
| 63 |
|
ifcl |
|
| 64 |
60 62 63
|
syl2an |
|
| 65 |
64
|
relogcld |
|
| 66 |
61
|
adantl |
|
| 67 |
65 66
|
nndivred |
|
| 68 |
67
|
recnd |
|
| 69 |
56 68
|
mulcld |
|
| 70 |
52 69
|
fsumcl |
|
| 71 |
30 70
|
mulcld |
|
| 72 |
18 71
|
fsumcl |
|
| 73 |
35 46
|
mulcld |
|
| 74 |
|
0cn |
|
| 75 |
39
|
ad2antrr |
|
| 76 |
|
ifcl |
|
| 77 |
74 75 76
|
sylancr |
|
| 78 |
30 70 77
|
subdid |
|
| 79 |
78
|
sumeq2dv |
|
| 80 |
30 77
|
mulcld |
|
| 81 |
18 71 80
|
fsumsub |
|
| 82 |
31 34 46
|
mulassd |
|
| 83 |
|
ovif2 |
|
| 84 |
33
|
mul01d |
|
| 85 |
84
|
ifeq1d |
|
| 86 |
40 41 42
|
divcan2d |
|
| 87 |
37 86
|
sylan2br |
|
| 88 |
87
|
ifeq2da |
|
| 89 |
85 88
|
eqtrd |
|
| 90 |
83 89
|
eqtrid |
|
| 91 |
90
|
adantr |
|
| 92 |
91
|
oveq2d |
|
| 93 |
74 39 76
|
sylancr |
|
| 94 |
93
|
adantr |
|
| 95 |
18 94 30
|
fsummulc1 |
|
| 96 |
82 92 95
|
3eqtrrd |
|
| 97 |
96
|
oveq2d |
|
| 98 |
79 81 97
|
3eqtrd |
|
| 99 |
98
|
mpteq2dva |
|
| 100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrvmasumiflem1 |
|
| 101 |
99 100
|
eqeltrrd |
|
| 102 |
72 73 101
|
o1dif |
|
| 103 |
51 102
|
mpbird |
|
| 104 |
7
|
ad2antrr |
|
| 105 |
|
elfzelz |
|
| 106 |
105
|
adantl |
|
| 107 |
4 1 5 2 104 106
|
dchrzrhcl |
|
| 108 |
|
elfznn |
|
| 109 |
108
|
adantl |
|
| 110 |
|
vmacl |
|
| 111 |
|
nndivre |
|
| 112 |
110 111
|
mpancom |
|
| 113 |
109 112
|
syl |
|
| 114 |
113
|
recnd |
|
| 115 |
107 114
|
mulcld |
|
| 116 |
18 115
|
fsumcl |
|
| 117 |
|
relogcl |
|
| 118 |
117
|
adantl |
|
| 119 |
118
|
recnd |
|
| 120 |
|
ifcl |
|
| 121 |
119 74 120
|
sylancl |
|
| 122 |
116 121
|
addcld |
|
| 123 |
122
|
abscld |
|
| 124 |
123
|
adantrr |
|
| 125 |
3
|
adantr |
|
| 126 |
7
|
adantr |
|
| 127 |
8
|
adantr |
|
| 128 |
|
simprl |
|
| 129 |
|
simprr |
|
| 130 |
1 2 125 4 5 6 126 127 128 129
|
dchrvmasum2if |
|
| 131 |
130
|
fveq2d |
|
| 132 |
124 131
|
eqled |
|
| 133 |
17 103 72 122 132
|
o1le |
|