Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|
2 |
|
rpvmasum.l |
|
3 |
|
rpvmasum.a |
|
4 |
|
rpvmasum.g |
|
5 |
|
rpvmasum.d |
|
6 |
|
rpvmasum.1 |
|
7 |
|
dchrisum.b |
|
8 |
|
dchrisum.n1 |
|
9 |
|
dchrvmasumif.f |
|
10 |
|
dchrvmasumif.c |
|
11 |
|
dchrvmasumif.s |
|
12 |
|
dchrvmasumif.1 |
|
13 |
|
dchrvmasumif.g |
|
14 |
|
dchrvmasumif.e |
|
15 |
|
dchrvmasumif.t |
|
16 |
|
dchrvmasumif.2 |
|
17 |
|
1red |
|
18 |
|
fzfid |
|
19 |
7
|
ad2antrr |
|
20 |
|
elfzelz |
|
21 |
20
|
adantl |
|
22 |
4 1 5 2 19 21
|
dchrzrhcl |
|
23 |
|
elfznn |
|
24 |
23
|
adantl |
|
25 |
|
mucl |
|
26 |
24 25
|
syl |
|
27 |
26
|
zred |
|
28 |
27 24
|
nndivred |
|
29 |
28
|
recnd |
|
30 |
22 29
|
mulcld |
|
31 |
18 30
|
fsumcl |
|
32 |
|
climcl |
|
33 |
11 32
|
syl |
|
34 |
33
|
adantr |
|
35 |
31 34
|
mulcld |
|
36 |
|
0cnd |
|
37 |
|
df-ne |
|
38 |
|
climcl |
|
39 |
15 38
|
syl |
|
40 |
39
|
adantr |
|
41 |
33
|
adantr |
|
42 |
|
simpr |
|
43 |
40 41 42
|
divcld |
|
44 |
37 43
|
sylan2br |
|
45 |
36 44
|
ifclda |
|
46 |
45
|
adantr |
|
47 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrmusum2 |
|
48 |
|
rpssre |
|
49 |
|
o1const |
|
50 |
48 45 49
|
sylancr |
|
51 |
35 46 47 50
|
o1mul2 |
|
52 |
|
fzfid |
|
53 |
19
|
adantr |
|
54 |
|
elfzelz |
|
55 |
54
|
adantl |
|
56 |
4 1 5 2 53 55
|
dchrzrhcl |
|
57 |
|
simpr |
|
58 |
23
|
nnrpd |
|
59 |
|
rpdivcl |
|
60 |
57 58 59
|
syl2an |
|
61 |
|
elfznn |
|
62 |
61
|
nnrpd |
|
63 |
|
ifcl |
|
64 |
60 62 63
|
syl2an |
|
65 |
64
|
relogcld |
|
66 |
61
|
adantl |
|
67 |
65 66
|
nndivred |
|
68 |
67
|
recnd |
|
69 |
56 68
|
mulcld |
|
70 |
52 69
|
fsumcl |
|
71 |
30 70
|
mulcld |
|
72 |
18 71
|
fsumcl |
|
73 |
35 46
|
mulcld |
|
74 |
|
0cn |
|
75 |
39
|
ad2antrr |
|
76 |
|
ifcl |
|
77 |
74 75 76
|
sylancr |
|
78 |
30 70 77
|
subdid |
|
79 |
78
|
sumeq2dv |
|
80 |
30 77
|
mulcld |
|
81 |
18 71 80
|
fsumsub |
|
82 |
31 34 46
|
mulassd |
|
83 |
|
ovif2 |
|
84 |
33
|
mul01d |
|
85 |
84
|
ifeq1d |
|
86 |
40 41 42
|
divcan2d |
|
87 |
37 86
|
sylan2br |
|
88 |
87
|
ifeq2da |
|
89 |
85 88
|
eqtrd |
|
90 |
83 89
|
eqtrid |
|
91 |
90
|
adantr |
|
92 |
91
|
oveq2d |
|
93 |
74 39 76
|
sylancr |
|
94 |
93
|
adantr |
|
95 |
18 94 30
|
fsummulc1 |
|
96 |
82 92 95
|
3eqtrrd |
|
97 |
96
|
oveq2d |
|
98 |
79 81 97
|
3eqtrd |
|
99 |
98
|
mpteq2dva |
|
100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrvmasumiflem1 |
|
101 |
99 100
|
eqeltrrd |
|
102 |
72 73 101
|
o1dif |
|
103 |
51 102
|
mpbird |
|
104 |
7
|
ad2antrr |
|
105 |
|
elfzelz |
|
106 |
105
|
adantl |
|
107 |
4 1 5 2 104 106
|
dchrzrhcl |
|
108 |
|
elfznn |
|
109 |
108
|
adantl |
|
110 |
|
vmacl |
|
111 |
|
nndivre |
|
112 |
110 111
|
mpancom |
|
113 |
109 112
|
syl |
|
114 |
113
|
recnd |
|
115 |
107 114
|
mulcld |
|
116 |
18 115
|
fsumcl |
|
117 |
|
relogcl |
|
118 |
117
|
adantl |
|
119 |
118
|
recnd |
|
120 |
|
ifcl |
|
121 |
119 74 120
|
sylancl |
|
122 |
116 121
|
addcld |
|
123 |
122
|
abscld |
|
124 |
123
|
adantrr |
|
125 |
3
|
adantr |
|
126 |
7
|
adantr |
|
127 |
8
|
adantr |
|
128 |
|
simprl |
|
129 |
|
simprr |
|
130 |
1 2 125 4 5 6 126 127 128 129
|
dchrvmasum2if |
|
131 |
130
|
fveq2d |
|
132 |
124 131
|
eqled |
|
133 |
17 103 72 122 132
|
o1le |
|