| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrisumn0.f |
|
| 10 |
|
dchrisumn0.c |
|
| 11 |
|
dchrisumn0.t |
|
| 12 |
|
dchrisumn0.1 |
|
| 13 |
|
rpssre |
|
| 14 |
|
ax-1cn |
|
| 15 |
|
o1const |
|
| 16 |
13 14 15
|
mp2an |
|
| 17 |
16
|
a1i |
|
| 18 |
14
|
a1i |
|
| 19 |
|
fzfid |
|
| 20 |
7
|
ad2antrr |
|
| 21 |
|
elfzelz |
|
| 22 |
21
|
adantl |
|
| 23 |
4 1 5 2 20 22
|
dchrzrhcl |
|
| 24 |
|
elfznn |
|
| 25 |
24
|
adantl |
|
| 26 |
|
mucl |
|
| 27 |
26
|
zred |
|
| 28 |
|
nndivre |
|
| 29 |
27 28
|
mpancom |
|
| 30 |
25 29
|
syl |
|
| 31 |
30
|
recnd |
|
| 32 |
23 31
|
mulcld |
|
| 33 |
19 32
|
fsumcl |
|
| 34 |
|
climcl |
|
| 35 |
11 34
|
syl |
|
| 36 |
35
|
adantr |
|
| 37 |
33 36
|
mulcld |
|
| 38 |
13
|
a1i |
|
| 39 |
|
subcl |
|
| 40 |
14 37 39
|
sylancr |
|
| 41 |
|
1red |
|
| 42 |
|
elrege0 |
|
| 43 |
10 42
|
sylib |
|
| 44 |
43
|
simpld |
|
| 45 |
|
fzfid |
|
| 46 |
32
|
adantlrr |
|
| 47 |
|
nnuz |
|
| 48 |
|
1zzd |
|
| 49 |
7
|
adantr |
|
| 50 |
|
nnz |
|
| 51 |
50
|
adantl |
|
| 52 |
4 1 5 2 49 51
|
dchrzrhcl |
|
| 53 |
|
nncn |
|
| 54 |
53
|
adantl |
|
| 55 |
|
nnne0 |
|
| 56 |
55
|
adantl |
|
| 57 |
52 54 56
|
divcld |
|
| 58 |
|
2fveq3 |
|
| 59 |
|
id |
|
| 60 |
58 59
|
oveq12d |
|
| 61 |
60
|
cbvmptv |
|
| 62 |
9 61
|
eqtri |
|
| 63 |
57 62
|
fmptd |
|
| 64 |
63
|
ffvelcdmda |
|
| 65 |
47 48 64
|
serf |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
|
simprl |
|
| 68 |
67
|
rpred |
|
| 69 |
|
nndivre |
|
| 70 |
68 24 69
|
syl2an |
|
| 71 |
24
|
adantl |
|
| 72 |
71
|
nncnd |
|
| 73 |
72
|
mullidd |
|
| 74 |
|
fznnfl |
|
| 75 |
68 74
|
syl |
|
| 76 |
75
|
simplbda |
|
| 77 |
73 76
|
eqbrtrd |
|
| 78 |
|
1red |
|
| 79 |
68
|
adantr |
|
| 80 |
71
|
nnrpd |
|
| 81 |
78 79 80
|
lemuldivd |
|
| 82 |
77 81
|
mpbid |
|
| 83 |
|
flge1nn |
|
| 84 |
70 82 83
|
syl2anc |
|
| 85 |
66 84
|
ffvelcdmd |
|
| 86 |
46 85
|
mulcld |
|
| 87 |
35
|
ad2antrr |
|
| 88 |
46 87
|
mulcld |
|
| 89 |
45 86 88
|
fsumsub |
|
| 90 |
46 85 87
|
subdid |
|
| 91 |
90
|
sumeq2dv |
|
| 92 |
7
|
ad3antrrr |
|
| 93 |
21
|
ad2antlr |
|
| 94 |
|
elfzelz |
|
| 95 |
94
|
adantl |
|
| 96 |
4 1 5 2 92 93 95
|
dchrzrhmul |
|
| 97 |
96
|
oveq1d |
|
| 98 |
23
|
adantlrr |
|
| 99 |
98
|
adantr |
|
| 100 |
72
|
adantr |
|
| 101 |
4 1 5 2 92 95
|
dchrzrhcl |
|
| 102 |
|
elfznn |
|
| 103 |
102
|
adantl |
|
| 104 |
103
|
nncnd |
|
| 105 |
71
|
nnne0d |
|
| 106 |
105
|
adantr |
|
| 107 |
103
|
nnne0d |
|
| 108 |
99 100 101 104 106 107
|
divmuldivd |
|
| 109 |
97 108
|
eqtr4d |
|
| 110 |
109
|
oveq2d |
|
| 111 |
71 26
|
syl |
|
| 112 |
111
|
zcnd |
|
| 113 |
112
|
adantr |
|
| 114 |
99 100 106
|
divcld |
|
| 115 |
101 104 107
|
divcld |
|
| 116 |
113 114 115
|
mulassd |
|
| 117 |
113 99 100 106
|
div12d |
|
| 118 |
117
|
oveq1d |
|
| 119 |
110 116 118
|
3eqtr2d |
|
| 120 |
119
|
sumeq2dv |
|
| 121 |
|
fzfid |
|
| 122 |
|
simpll |
|
| 123 |
122 102 57
|
syl2an |
|
| 124 |
121 46 123
|
fsummulc2 |
|
| 125 |
|
ovex |
|
| 126 |
60 9 125
|
fvmpt |
|
| 127 |
103 126
|
syl |
|
| 128 |
84 47
|
eleqtrdi |
|
| 129 |
127 128 123
|
fsumser |
|
| 130 |
129
|
oveq2d |
|
| 131 |
120 124 130
|
3eqtr2rd |
|
| 132 |
131
|
sumeq2dv |
|
| 133 |
|
2fveq3 |
|
| 134 |
|
id |
|
| 135 |
133 134
|
oveq12d |
|
| 136 |
135
|
oveq2d |
|
| 137 |
|
elrabi |
|
| 138 |
137
|
ad2antll |
|
| 139 |
138 26
|
syl |
|
| 140 |
139
|
zcnd |
|
| 141 |
7
|
ad2antrr |
|
| 142 |
|
elfzelz |
|
| 143 |
142
|
adantl |
|
| 144 |
4 1 5 2 141 143
|
dchrzrhcl |
|
| 145 |
|
fz1ssnn |
|
| 146 |
145
|
a1i |
|
| 147 |
146
|
sselda |
|
| 148 |
147
|
nncnd |
|
| 149 |
147
|
nnne0d |
|
| 150 |
144 148 149
|
divcld |
|
| 151 |
150
|
adantrr |
|
| 152 |
140 151
|
mulcld |
|
| 153 |
136 68 152
|
dvdsflsumcom |
|
| 154 |
|
2fveq3 |
|
| 155 |
|
id |
|
| 156 |
154 155
|
oveq12d |
|
| 157 |
|
simprr |
|
| 158 |
|
flge1nn |
|
| 159 |
68 157 158
|
syl2anc |
|
| 160 |
159 47
|
eleqtrdi |
|
| 161 |
|
eluzfz1 |
|
| 162 |
160 161
|
syl |
|
| 163 |
156 45 146 162 150
|
musumsum |
|
| 164 |
132 153 163
|
3eqtr2d |
|
| 165 |
4 1 5 2 7
|
dchrzrh1 |
|
| 166 |
165
|
adantr |
|
| 167 |
166
|
oveq1d |
|
| 168 |
|
1div1e1 |
|
| 169 |
167 168
|
eqtrdi |
|
| 170 |
164 169
|
eqtr2d |
|
| 171 |
35
|
adantr |
|
| 172 |
45 171 46
|
fsummulc1 |
|
| 173 |
170 172
|
oveq12d |
|
| 174 |
89 91 173
|
3eqtr4rd |
|
| 175 |
174
|
fveq2d |
|
| 176 |
85 87
|
subcld |
|
| 177 |
46 176
|
mulcld |
|
| 178 |
45 177
|
fsumcl |
|
| 179 |
178
|
abscld |
|
| 180 |
177
|
abscld |
|
| 181 |
45 180
|
fsumrecl |
|
| 182 |
44
|
adantr |
|
| 183 |
45 177
|
fsumabs |
|
| 184 |
|
reflcl |
|
| 185 |
68 184
|
syl |
|
| 186 |
185 182
|
remulcld |
|
| 187 |
186 67
|
rerpdivcld |
|
| 188 |
182 67
|
rerpdivcld |
|
| 189 |
188
|
adantr |
|
| 190 |
46
|
abscld |
|
| 191 |
71
|
nnrecred |
|
| 192 |
176
|
abscld |
|
| 193 |
80
|
rpred |
|
| 194 |
189 193
|
remulcld |
|
| 195 |
46
|
absge0d |
|
| 196 |
176
|
absge0d |
|
| 197 |
98
|
abscld |
|
| 198 |
31
|
adantlrr |
|
| 199 |
198
|
abscld |
|
| 200 |
98
|
absge0d |
|
| 201 |
198
|
absge0d |
|
| 202 |
|
eqid |
|
| 203 |
7
|
ad2antrr |
|
| 204 |
3
|
nnnn0d |
|
| 205 |
1 202 2
|
znzrhfo |
|
| 206 |
|
fof |
|
| 207 |
204 205 206
|
3syl |
|
| 208 |
207
|
adantr |
|
| 209 |
|
ffvelcdm |
|
| 210 |
208 21 209
|
syl2an |
|
| 211 |
4 5 1 202 203 210
|
dchrabs2 |
|
| 212 |
112 72 105
|
absdivd |
|
| 213 |
80
|
rprege0d |
|
| 214 |
|
absid |
|
| 215 |
213 214
|
syl |
|
| 216 |
215
|
oveq2d |
|
| 217 |
212 216
|
eqtrd |
|
| 218 |
112
|
abscld |
|
| 219 |
|
mule1 |
|
| 220 |
71 219
|
syl |
|
| 221 |
218 78 80 220
|
lediv1dd |
|
| 222 |
217 221
|
eqbrtrd |
|
| 223 |
197 78 199 191 200 201 211 222
|
lemul12ad |
|
| 224 |
98 198
|
absmuld |
|
| 225 |
191
|
recnd |
|
| 226 |
225
|
mullidd |
|
| 227 |
226
|
eqcomd |
|
| 228 |
223 224 227
|
3brtr4d |
|
| 229 |
|
2fveq3 |
|
| 230 |
229
|
fvoveq1d |
|
| 231 |
|
oveq2 |
|
| 232 |
230 231
|
breq12d |
|
| 233 |
12
|
ad2antrr |
|
| 234 |
|
1re |
|
| 235 |
|
elicopnf |
|
| 236 |
234 235
|
ax-mp |
|
| 237 |
70 82 236
|
sylanbrc |
|
| 238 |
232 233 237
|
rspcdva |
|
| 239 |
182
|
recnd |
|
| 240 |
239
|
adantr |
|
| 241 |
|
rpcnne0 |
|
| 242 |
241
|
ad2antrl |
|
| 243 |
242
|
adantr |
|
| 244 |
|
divdiv2 |
|
| 245 |
240 243 72 105 244
|
syl112anc |
|
| 246 |
|
div23 |
|
| 247 |
240 72 243 246
|
syl3anc |
|
| 248 |
245 247
|
eqtrd |
|
| 249 |
238 248
|
breqtrd |
|
| 250 |
190 191 192 194 195 196 228 249
|
lemul12ad |
|
| 251 |
46 176
|
absmuld |
|
| 252 |
188
|
recnd |
|
| 253 |
252
|
adantr |
|
| 254 |
253 72 105
|
divcan4d |
|
| 255 |
253 72
|
mulcld |
|
| 256 |
255 72 105
|
divrec2d |
|
| 257 |
254 256
|
eqtr3d |
|
| 258 |
250 251 257
|
3brtr4d |
|
| 259 |
45 180 189 258
|
fsumle |
|
| 260 |
159
|
nnnn0d |
|
| 261 |
|
hashfz1 |
|
| 262 |
260 261
|
syl |
|
| 263 |
262
|
oveq1d |
|
| 264 |
|
fsumconst |
|
| 265 |
45 252 264
|
syl2anc |
|
| 266 |
159
|
nncnd |
|
| 267 |
|
divass |
|
| 268 |
266 239 242 267
|
syl3anc |
|
| 269 |
263 265 268
|
3eqtr4d |
|
| 270 |
259 269
|
breqtrd |
|
| 271 |
43
|
adantr |
|
| 272 |
|
flle |
|
| 273 |
68 272
|
syl |
|
| 274 |
|
lemul1a |
|
| 275 |
185 68 271 273 274
|
syl31anc |
|
| 276 |
186 182 67
|
ledivmuld |
|
| 277 |
275 276
|
mpbird |
|
| 278 |
181 187 182 270 277
|
letrd |
|
| 279 |
179 181 182 183 278
|
letrd |
|
| 280 |
175 279
|
eqbrtrd |
|
| 281 |
38 40 41 44 280
|
elo1d |
|
| 282 |
18 37 281
|
o1dif |
|
| 283 |
17 282
|
mpbid |
|