Metamath Proof Explorer


Theorem dchrmusum2

Description: The sum of the Möbius function multiplied by a non-principal Dirichlet character, divided by n , is bounded, provided that T =/= 0 . Lemma 9.4.2 of Shapiro, p. 380. (Contributed by Mario Carneiro, 4-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrisumn0.f F = a X L a a
dchrisumn0.c φ C 0 +∞
dchrisumn0.t φ seq 1 + F T
dchrisumn0.1 φ y 1 +∞ seq 1 + F y T C y
Assertion dchrmusum2 φ x + d = 1 x X L d μ d d T 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrisumn0.f F = a X L a a
10 dchrisumn0.c φ C 0 +∞
11 dchrisumn0.t φ seq 1 + F T
12 dchrisumn0.1 φ y 1 +∞ seq 1 + F y T C y
13 rpssre +
14 ax-1cn 1
15 o1const + 1 x + 1 𝑂1
16 13 14 15 mp2an x + 1 𝑂1
17 16 a1i φ x + 1 𝑂1
18 14 a1i φ x + 1
19 fzfid φ x + 1 x Fin
20 7 ad2antrr φ x + d 1 x X D
21 elfzelz d 1 x d
22 21 adantl φ x + d 1 x d
23 4 1 5 2 20 22 dchrzrhcl φ x + d 1 x X L d
24 elfznn d 1 x d
25 24 adantl φ x + d 1 x d
26 mucl d μ d
27 26 zred d μ d
28 nndivre μ d d μ d d
29 27 28 mpancom d μ d d
30 25 29 syl φ x + d 1 x μ d d
31 30 recnd φ x + d 1 x μ d d
32 23 31 mulcld φ x + d 1 x X L d μ d d
33 19 32 fsumcl φ x + d = 1 x X L d μ d d
34 climcl seq 1 + F T T
35 11 34 syl φ T
36 35 adantr φ x + T
37 33 36 mulcld φ x + d = 1 x X L d μ d d T
38 13 a1i φ +
39 subcl 1 d = 1 x X L d μ d d T 1 d = 1 x X L d μ d d T
40 14 37 39 sylancr φ x + 1 d = 1 x X L d μ d d T
41 1red φ 1
42 elrege0 C 0 +∞ C 0 C
43 10 42 sylib φ C 0 C
44 43 simpld φ C
45 fzfid φ x + 1 x 1 x Fin
46 32 adantlrr φ x + 1 x d 1 x X L d μ d d
47 nnuz = 1
48 1zzd φ 1
49 7 adantr φ m X D
50 nnz m m
51 50 adantl φ m m
52 4 1 5 2 49 51 dchrzrhcl φ m X L m
53 nncn m m
54 53 adantl φ m m
55 nnne0 m m 0
56 55 adantl φ m m 0
57 52 54 56 divcld φ m X L m m
58 2fveq3 a = m X L a = X L m
59 id a = m a = m
60 58 59 oveq12d a = m X L a a = X L m m
61 60 cbvmptv a X L a a = m X L m m
62 9 61 eqtri F = m X L m m
63 57 62 fmptd φ F :
64 63 ffvelrnda φ m F m
65 47 48 64 serf φ seq 1 + F :
66 65 ad2antrr φ x + 1 x d 1 x seq 1 + F :
67 simprl φ x + 1 x x +
68 67 rpred φ x + 1 x x
69 nndivre x d x d
70 68 24 69 syl2an φ x + 1 x d 1 x x d
71 24 adantl φ x + 1 x d 1 x d
72 71 nncnd φ x + 1 x d 1 x d
73 72 mulid2d φ x + 1 x d 1 x 1 d = d
74 fznnfl x d 1 x d d x
75 68 74 syl φ x + 1 x d 1 x d d x
76 75 simplbda φ x + 1 x d 1 x d x
77 73 76 eqbrtrd φ x + 1 x d 1 x 1 d x
78 1red φ x + 1 x d 1 x 1
79 68 adantr φ x + 1 x d 1 x x
80 71 nnrpd φ x + 1 x d 1 x d +
81 78 79 80 lemuldivd φ x + 1 x d 1 x 1 d x 1 x d
82 77 81 mpbid φ x + 1 x d 1 x 1 x d
83 flge1nn x d 1 x d x d
84 70 82 83 syl2anc φ x + 1 x d 1 x x d
85 66 84 ffvelrnd φ x + 1 x d 1 x seq 1 + F x d
86 46 85 mulcld φ x + 1 x d 1 x X L d μ d d seq 1 + F x d
87 35 ad2antrr φ x + 1 x d 1 x T
88 46 87 mulcld φ x + 1 x d 1 x X L d μ d d T
89 45 86 88 fsumsub φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d X L d μ d d T = d = 1 x X L d μ d d seq 1 + F x d d = 1 x X L d μ d d T
90 46 85 87 subdid φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T = X L d μ d d seq 1 + F x d X L d μ d d T
91 90 sumeq2dv φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T = d = 1 x X L d μ d d seq 1 + F x d X L d μ d d T
92 7 ad3antrrr φ x + 1 x d 1 x m 1 x d X D
93 21 ad2antlr φ x + 1 x d 1 x m 1 x d d
94 elfzelz m 1 x d m
95 94 adantl φ x + 1 x d 1 x m 1 x d m
96 4 1 5 2 92 93 95 dchrzrhmul φ x + 1 x d 1 x m 1 x d X L d m = X L d X L m
97 96 oveq1d φ x + 1 x d 1 x m 1 x d X L d m d m = X L d X L m d m
98 23 adantlrr φ x + 1 x d 1 x X L d
99 98 adantr φ x + 1 x d 1 x m 1 x d X L d
100 72 adantr φ x + 1 x d 1 x m 1 x d d
101 4 1 5 2 92 95 dchrzrhcl φ x + 1 x d 1 x m 1 x d X L m
102 elfznn m 1 x d m
103 102 adantl φ x + 1 x d 1 x m 1 x d m
104 103 nncnd φ x + 1 x d 1 x m 1 x d m
105 71 nnne0d φ x + 1 x d 1 x d 0
106 105 adantr φ x + 1 x d 1 x m 1 x d d 0
107 103 nnne0d φ x + 1 x d 1 x m 1 x d m 0
108 99 100 101 104 106 107 divmuldivd φ x + 1 x d 1 x m 1 x d X L d d X L m m = X L d X L m d m
109 97 108 eqtr4d φ x + 1 x d 1 x m 1 x d X L d m d m = X L d d X L m m
110 109 oveq2d φ x + 1 x d 1 x m 1 x d μ d X L d m d m = μ d X L d d X L m m
111 71 26 syl φ x + 1 x d 1 x μ d
112 111 zcnd φ x + 1 x d 1 x μ d
113 112 adantr φ x + 1 x d 1 x m 1 x d μ d
114 99 100 106 divcld φ x + 1 x d 1 x m 1 x d X L d d
115 101 104 107 divcld φ x + 1 x d 1 x m 1 x d X L m m
116 113 114 115 mulassd φ x + 1 x d 1 x m 1 x d μ d X L d d X L m m = μ d X L d d X L m m
117 113 99 100 106 div12d φ x + 1 x d 1 x m 1 x d μ d X L d d = X L d μ d d
118 117 oveq1d φ x + 1 x d 1 x m 1 x d μ d X L d d X L m m = X L d μ d d X L m m
119 110 116 118 3eqtr2d φ x + 1 x d 1 x m 1 x d μ d X L d m d m = X L d μ d d X L m m
120 119 sumeq2dv φ x + 1 x d 1 x m = 1 x d μ d X L d m d m = m = 1 x d X L d μ d d X L m m
121 fzfid φ x + 1 x d 1 x 1 x d Fin
122 simpll φ x + 1 x d 1 x φ
123 122 102 57 syl2an φ x + 1 x d 1 x m 1 x d X L m m
124 121 46 123 fsummulc2 φ x + 1 x d 1 x X L d μ d d m = 1 x d X L m m = m = 1 x d X L d μ d d X L m m
125 ovex X L m m V
126 60 9 125 fvmpt m F m = X L m m
127 103 126 syl φ x + 1 x d 1 x m 1 x d F m = X L m m
128 84 47 eleqtrdi φ x + 1 x d 1 x x d 1
129 127 128 123 fsumser φ x + 1 x d 1 x m = 1 x d X L m m = seq 1 + F x d
130 129 oveq2d φ x + 1 x d 1 x X L d μ d d m = 1 x d X L m m = X L d μ d d seq 1 + F x d
131 120 124 130 3eqtr2rd φ x + 1 x d 1 x X L d μ d d seq 1 + F x d = m = 1 x d μ d X L d m d m
132 131 sumeq2dv φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d = d = 1 x m = 1 x d μ d X L d m d m
133 2fveq3 n = d m X L n = X L d m
134 id n = d m n = d m
135 133 134 oveq12d n = d m X L n n = X L d m d m
136 135 oveq2d n = d m μ d X L n n = μ d X L d m d m
137 elrabi d y | y n d
138 137 ad2antll φ x + 1 x n 1 x d y | y n d
139 138 26 syl φ x + 1 x n 1 x d y | y n μ d
140 139 zcnd φ x + 1 x n 1 x d y | y n μ d
141 7 ad2antrr φ x + 1 x n 1 x X D
142 elfzelz n 1 x n
143 142 adantl φ x + 1 x n 1 x n
144 4 1 5 2 141 143 dchrzrhcl φ x + 1 x n 1 x X L n
145 fz1ssnn 1 x
146 145 a1i φ x + 1 x 1 x
147 146 sselda φ x + 1 x n 1 x n
148 147 nncnd φ x + 1 x n 1 x n
149 147 nnne0d φ x + 1 x n 1 x n 0
150 144 148 149 divcld φ x + 1 x n 1 x X L n n
151 150 adantrr φ x + 1 x n 1 x d y | y n X L n n
152 140 151 mulcld φ x + 1 x n 1 x d y | y n μ d X L n n
153 136 68 152 dvdsflsumcom φ x + 1 x n = 1 x d y | y n μ d X L n n = d = 1 x m = 1 x d μ d X L d m d m
154 2fveq3 n = 1 X L n = X L 1
155 id n = 1 n = 1
156 154 155 oveq12d n = 1 X L n n = X L 1 1
157 simprr φ x + 1 x 1 x
158 flge1nn x 1 x x
159 68 157 158 syl2anc φ x + 1 x x
160 159 47 eleqtrdi φ x + 1 x x 1
161 eluzfz1 x 1 1 1 x
162 160 161 syl φ x + 1 x 1 1 x
163 156 45 146 162 150 musumsum φ x + 1 x n = 1 x d y | y n μ d X L n n = X L 1 1
164 132 153 163 3eqtr2d φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d = X L 1 1
165 4 1 5 2 7 dchrzrh1 φ X L 1 = 1
166 165 adantr φ x + 1 x X L 1 = 1
167 166 oveq1d φ x + 1 x X L 1 1 = 1 1
168 1div1e1 1 1 = 1
169 167 168 eqtrdi φ x + 1 x X L 1 1 = 1
170 164 169 eqtr2d φ x + 1 x 1 = d = 1 x X L d μ d d seq 1 + F x d
171 35 adantr φ x + 1 x T
172 45 171 46 fsummulc1 φ x + 1 x d = 1 x X L d μ d d T = d = 1 x X L d μ d d T
173 170 172 oveq12d φ x + 1 x 1 d = 1 x X L d μ d d T = d = 1 x X L d μ d d seq 1 + F x d d = 1 x X L d μ d d T
174 89 91 173 3eqtr4rd φ x + 1 x 1 d = 1 x X L d μ d d T = d = 1 x X L d μ d d seq 1 + F x d T
175 174 fveq2d φ x + 1 x 1 d = 1 x X L d μ d d T = d = 1 x X L d μ d d seq 1 + F x d T
176 85 87 subcld φ x + 1 x d 1 x seq 1 + F x d T
177 46 176 mulcld φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T
178 45 177 fsumcl φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T
179 178 abscld φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T
180 177 abscld φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T
181 45 180 fsumrecl φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T
182 44 adantr φ x + 1 x C
183 45 177 fsumabs φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T d = 1 x X L d μ d d seq 1 + F x d T
184 reflcl x x
185 68 184 syl φ x + 1 x x
186 185 182 remulcld φ x + 1 x x C
187 186 67 rerpdivcld φ x + 1 x x C x
188 182 67 rerpdivcld φ x + 1 x C x
189 188 adantr φ x + 1 x d 1 x C x
190 46 abscld φ x + 1 x d 1 x X L d μ d d
191 71 nnrecred φ x + 1 x d 1 x 1 d
192 176 abscld φ x + 1 x d 1 x seq 1 + F x d T
193 80 rpred φ x + 1 x d 1 x d
194 189 193 remulcld φ x + 1 x d 1 x C x d
195 46 absge0d φ x + 1 x d 1 x 0 X L d μ d d
196 176 absge0d φ x + 1 x d 1 x 0 seq 1 + F x d T
197 98 abscld φ x + 1 x d 1 x X L d
198 31 adantlrr φ x + 1 x d 1 x μ d d
199 198 abscld φ x + 1 x d 1 x μ d d
200 98 absge0d φ x + 1 x d 1 x 0 X L d
201 198 absge0d φ x + 1 x d 1 x 0 μ d d
202 eqid Base Z = Base Z
203 7 ad2antrr φ x + 1 x d 1 x X D
204 3 nnnn0d φ N 0
205 1 202 2 znzrhfo N 0 L : onto Base Z
206 fof L : onto Base Z L : Base Z
207 204 205 206 3syl φ L : Base Z
208 207 adantr φ x + 1 x L : Base Z
209 ffvelrn L : Base Z d L d Base Z
210 208 21 209 syl2an φ x + 1 x d 1 x L d Base Z
211 4 5 1 202 203 210 dchrabs2 φ x + 1 x d 1 x X L d 1
212 112 72 105 absdivd φ x + 1 x d 1 x μ d d = μ d d
213 80 rprege0d φ x + 1 x d 1 x d 0 d
214 absid d 0 d d = d
215 213 214 syl φ x + 1 x d 1 x d = d
216 215 oveq2d φ x + 1 x d 1 x μ d d = μ d d
217 212 216 eqtrd φ x + 1 x d 1 x μ d d = μ d d
218 112 abscld φ x + 1 x d 1 x μ d
219 mule1 d μ d 1
220 71 219 syl φ x + 1 x d 1 x μ d 1
221 218 78 80 220 lediv1dd φ x + 1 x d 1 x μ d d 1 d
222 217 221 eqbrtrd φ x + 1 x d 1 x μ d d 1 d
223 197 78 199 191 200 201 211 222 lemul12ad φ x + 1 x d 1 x X L d μ d d 1 1 d
224 98 198 absmuld φ x + 1 x d 1 x X L d μ d d = X L d μ d d
225 191 recnd φ x + 1 x d 1 x 1 d
226 225 mulid2d φ x + 1 x d 1 x 1 1 d = 1 d
227 226 eqcomd φ x + 1 x d 1 x 1 d = 1 1 d
228 223 224 227 3brtr4d φ x + 1 x d 1 x X L d μ d d 1 d
229 2fveq3 y = x d seq 1 + F y = seq 1 + F x d
230 229 fvoveq1d y = x d seq 1 + F y T = seq 1 + F x d T
231 oveq2 y = x d C y = C x d
232 230 231 breq12d y = x d seq 1 + F y T C y seq 1 + F x d T C x d
233 12 ad2antrr φ x + 1 x d 1 x y 1 +∞ seq 1 + F y T C y
234 1re 1
235 elicopnf 1 x d 1 +∞ x d 1 x d
236 234 235 ax-mp x d 1 +∞ x d 1 x d
237 70 82 236 sylanbrc φ x + 1 x d 1 x x d 1 +∞
238 232 233 237 rspcdva φ x + 1 x d 1 x seq 1 + F x d T C x d
239 182 recnd φ x + 1 x C
240 239 adantr φ x + 1 x d 1 x C
241 rpcnne0 x + x x 0
242 241 ad2antrl φ x + 1 x x x 0
243 242 adantr φ x + 1 x d 1 x x x 0
244 divdiv2 C x x 0 d d 0 C x d = C d x
245 240 243 72 105 244 syl112anc φ x + 1 x d 1 x C x d = C d x
246 div23 C d x x 0 C d x = C x d
247 240 72 243 246 syl3anc φ x + 1 x d 1 x C d x = C x d
248 245 247 eqtrd φ x + 1 x d 1 x C x d = C x d
249 238 248 breqtrd φ x + 1 x d 1 x seq 1 + F x d T C x d
250 190 191 192 194 195 196 228 249 lemul12ad φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T 1 d C x d
251 46 176 absmuld φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T = X L d μ d d seq 1 + F x d T
252 188 recnd φ x + 1 x C x
253 252 adantr φ x + 1 x d 1 x C x
254 253 72 105 divcan4d φ x + 1 x d 1 x C x d d = C x
255 253 72 mulcld φ x + 1 x d 1 x C x d
256 255 72 105 divrec2d φ x + 1 x d 1 x C x d d = 1 d C x d
257 254 256 eqtr3d φ x + 1 x d 1 x C x = 1 d C x d
258 250 251 257 3brtr4d φ x + 1 x d 1 x X L d μ d d seq 1 + F x d T C x
259 45 180 189 258 fsumle φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T d = 1 x C x
260 159 nnnn0d φ x + 1 x x 0
261 hashfz1 x 0 1 x = x
262 260 261 syl φ x + 1 x 1 x = x
263 262 oveq1d φ x + 1 x 1 x C x = x C x
264 fsumconst 1 x Fin C x d = 1 x C x = 1 x C x
265 45 252 264 syl2anc φ x + 1 x d = 1 x C x = 1 x C x
266 159 nncnd φ x + 1 x x
267 divass x C x x 0 x C x = x C x
268 266 239 242 267 syl3anc φ x + 1 x x C x = x C x
269 263 265 268 3eqtr4d φ x + 1 x d = 1 x C x = x C x
270 259 269 breqtrd φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T x C x
271 43 adantr φ x + 1 x C 0 C
272 flle x x x
273 68 272 syl φ x + 1 x x x
274 lemul1a x x C 0 C x x x C x C
275 185 68 271 273 274 syl31anc φ x + 1 x x C x C
276 186 182 67 ledivmuld φ x + 1 x x C x C x C x C
277 275 276 mpbird φ x + 1 x x C x C
278 181 187 182 270 277 letrd φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T C
279 179 181 182 183 278 letrd φ x + 1 x d = 1 x X L d μ d d seq 1 + F x d T C
280 175 279 eqbrtrd φ x + 1 x 1 d = 1 x X L d μ d d T C
281 38 40 41 44 280 elo1d φ x + 1 d = 1 x X L d μ d d T 𝑂1
282 18 37 281 o1dif φ x + 1 𝑂1 x + d = 1 x X L d μ d d T 𝑂1
283 17 282 mpbid φ x + d = 1 x X L d μ d d T 𝑂1