Metamath Proof Explorer


Theorem dchrvmasumlem1

Description: An alternative expression for a Dirichlet-weighted von Mangoldt sum in terms of the Möbius function. Equation 9.4.11 of Shapiro, p. 377. (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrvmasum.a φA+
Assertion dchrvmasumlem1 φn=1AXLnΛnn=d=1AXLdμddm=1AdXLmlogmm

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrvmasum.a φA+
10 2fveq3 n=dmXLn=XLdm
11 oveq2 n=dmμdn=μddm
12 fvoveq1 n=dmlognd=logdmd
13 11 12 oveq12d n=dmμdnlognd=μddmlogdmd
14 10 13 oveq12d n=dmXLnμdnlognd=XLdmμddmlogdmd
15 9 rpred φA
16 7 adantr φn1AXD
17 elfzelz n1An
18 17 adantl φn1An
19 4 1 5 2 16 18 dchrzrhcl φn1AXLn
20 19 adantrr φn1Adx|xnXLn
21 elrabi dx|xnd
22 21 ad2antll φn1Adx|xnd
23 mucl dμd
24 22 23 syl φn1Adx|xnμd
25 24 zred φn1Adx|xnμd
26 elfznn n1An
27 26 ad2antrl φn1Adx|xnn
28 25 27 nndivred φn1Adx|xnμdn
29 28 recnd φn1Adx|xnμdn
30 27 nnrpd φn1Adx|xnn+
31 22 nnrpd φn1Adx|xnd+
32 30 31 rpdivcld φn1Adx|xnnd+
33 32 relogcld φn1Adx|xnlognd
34 33 recnd φn1Adx|xnlognd
35 29 34 mulcld φn1Adx|xnμdnlognd
36 20 35 mulcld φn1Adx|xnXLnμdnlognd
37 14 15 36 dvdsflsumcom φn=1Adx|xnXLnμdnlognd=d=1Am=1AdXLdmμddmlogdmd
38 vmaf Λ:
39 38 a1i φΛ:
40 ax-resscn
41 fss Λ:Λ:
42 39 40 41 sylancl φΛ:
43 vmasum mix|xmΛi=logm
44 43 adantl φmix|xmΛi=logm
45 44 eqcomd φmlogm=ix|xmΛi
46 45 mpteq2dva φmlogm=mix|xmΛi
47 42 46 muinv φΛ=ndx|xnμdmlogmnd
48 47 fveq1d φΛn=ndx|xnμdmlogmndn
49 sumex dx|xnμdmlogmndV
50 eqid ndx|xnμdmlogmnd=ndx|xnμdmlogmnd
51 50 fvmpt2 ndx|xnμdmlogmndVndx|xnμdmlogmndn=dx|xnμdmlogmnd
52 26 49 51 sylancl n1Andx|xnμdmlogmndn=dx|xnμdmlogmnd
53 48 52 sylan9eq φn1AΛn=dx|xnμdmlogmnd
54 breq1 x=dxndn
55 54 elrab dx|xnddn
56 55 simprbi dx|xndn
57 56 adantl φn1Adx|xndn
58 26 adantl φn1An
59 nndivdvds nddnnd
60 58 21 59 syl2an φn1Adx|xndnnd
61 57 60 mpbid φn1Adx|xnnd
62 fveq2 m=ndlogm=lognd
63 eqid mlogm=mlogm
64 fvex logndV
65 62 63 64 fvmpt ndmlogmnd=lognd
66 61 65 syl φn1Adx|xnmlogmnd=lognd
67 66 oveq2d φn1Adx|xnμdmlogmnd=μdlognd
68 67 sumeq2dv φn1Adx|xnμdmlogmnd=dx|xnμdlognd
69 53 68 eqtrd φn1AΛn=dx|xnμdlognd
70 69 oveq1d φn1AΛnn=dx|xnμdlogndn
71 fzfid φn1A1nFin
72 dvdsssfz1 nx|xn1n
73 58 72 syl φn1Ax|xn1n
74 71 73 ssfid φn1Ax|xnFin
75 58 nncnd φn1An
76 24 zcnd φn1Adx|xnμd
77 76 anassrs φn1Adx|xnμd
78 34 anassrs φn1Adx|xnlognd
79 77 78 mulcld φn1Adx|xnμdlognd
80 58 nnne0d φn1An0
81 74 75 79 80 fsumdivc φn1Adx|xnμdlogndn=dx|xnμdlogndn
82 21 adantl φn1Adx|xnd
83 82 23 syl φn1Adx|xnμd
84 83 zcnd φn1Adx|xnμd
85 75 adantr φn1Adx|xnn
86 80 adantr φn1Adx|xnn0
87 84 78 85 86 div23d φn1Adx|xnμdlogndn=μdnlognd
88 87 sumeq2dv φn1Adx|xnμdlogndn=dx|xnμdnlognd
89 70 81 88 3eqtrd φn1AΛnn=dx|xnμdnlognd
90 89 oveq2d φn1AXLnΛnn=XLndx|xnμdnlognd
91 35 anassrs φn1Adx|xnμdnlognd
92 74 19 91 fsummulc2 φn1AXLndx|xnμdnlognd=dx|xnXLnμdnlognd
93 90 92 eqtrd φn1AXLnΛnn=dx|xnXLnμdnlognd
94 93 sumeq2dv φn=1AXLnΛnn=n=1Adx|xnXLnμdnlognd
95 fzfid φd1A1AdFin
96 7 adantr φd1AXD
97 elfzelz d1Ad
98 97 adantl φd1Ad
99 4 1 5 2 96 98 dchrzrhcl φd1AXLd
100 fznnfl Ad1AddA
101 15 100 syl φd1AddA
102 101 simprbda φd1Ad
103 102 23 syl φd1Aμd
104 103 zred φd1Aμd
105 104 102 nndivred φd1Aμdd
106 105 recnd φd1Aμdd
107 99 106 mulcld φd1AXLdμdd
108 7 ad2antrr φd1Am1AdXD
109 elfzelz m1Adm
110 109 adantl φd1Am1Adm
111 4 1 5 2 108 110 dchrzrhcl φd1Am1AdXLm
112 elfznn m1Adm
113 112 adantl φd1Am1Adm
114 113 nnrpd φd1Am1Adm+
115 114 relogcld φd1Am1Adlogm
116 115 113 nndivred φd1Am1Adlogmm
117 116 recnd φd1Am1Adlogmm
118 111 117 mulcld φd1Am1AdXLmlogmm
119 95 107 118 fsummulc2 φd1AXLdμddm=1AdXLmlogmm=m=1AdXLdμddXLmlogmm
120 99 adantr φd1Am1AdXLd
121 106 adantr φd1Am1Adμdd
122 120 121 111 117 mul4d φd1Am1AdXLdμddXLmlogmm=XLdXLmμddlogmm
123 97 ad2antlr φd1Am1Add
124 4 1 5 2 108 123 110 dchrzrhmul φd1Am1AdXLdm=XLdXLm
125 104 adantr φd1Am1Adμd
126 125 recnd φd1Am1Adμd
127 115 recnd φd1Am1Adlogm
128 102 nnrpd φd1Ad+
129 128 adantr φd1Am1Add+
130 129 114 rpmulcld φd1Am1Addm+
131 130 rpcnne0d φd1Am1Addmdm0
132 div23 μdlogmdmdm0μdlogmdm=μddmlogm
133 126 127 131 132 syl3anc φd1Am1Adμdlogmdm=μddmlogm
134 129 rpcnne0d φd1Am1Addd0
135 114 rpcnne0d φd1Am1Admm0
136 divmuldiv μdlogmdd0mm0μddlogmm=μdlogmdm
137 126 127 134 135 136 syl22anc φd1Am1Adμddlogmm=μdlogmdm
138 113 nncnd φd1Am1Adm
139 129 rpcnd φd1Am1Add
140 129 rpne0d φd1Am1Add0
141 138 139 140 divcan3d φd1Am1Addmd=m
142 141 fveq2d φd1Am1Adlogdmd=logm
143 142 oveq2d φd1Am1Adμddmlogdmd=μddmlogm
144 133 137 143 3eqtr4rd φd1Am1Adμddmlogdmd=μddlogmm
145 124 144 oveq12d φd1Am1AdXLdmμddmlogdmd=XLdXLmμddlogmm
146 122 145 eqtr4d φd1Am1AdXLdμddXLmlogmm=XLdmμddmlogdmd
147 146 sumeq2dv φd1Am=1AdXLdμddXLmlogmm=m=1AdXLdmμddmlogdmd
148 119 147 eqtrd φd1AXLdμddm=1AdXLmlogmm=m=1AdXLdmμddmlogdmd
149 148 sumeq2dv φd=1AXLdμddm=1AdXLmlogmm=d=1Am=1AdXLdmμddmlogdmd
150 37 94 149 3eqtr4d φn=1AXLnΛnn=d=1AXLdμddm=1AdXLmlogmm