Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
9 |
|
dchrvmasum.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
10 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) ) |
11 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) = ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) ) |
12 |
|
fvoveq1 |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( log ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) |
13 |
11 12
|
oveq12d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) |
14 |
10 13
|
oveq12d |
⊢ ( 𝑛 = ( 𝑑 · 𝑚 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
15 |
9
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
16 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐷 ) |
17 |
|
elfzelz |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℤ ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℤ ) |
19 |
4 1 5 2 16 18
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
20 |
19
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) ∈ ℂ ) |
21 |
|
elrabi |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } → 𝑑 ∈ ℕ ) |
22 |
21
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝑑 ∈ ℕ ) |
23 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
25 |
24
|
zred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℝ ) |
26 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
27 |
26
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝑛 ∈ ℕ ) |
28 |
25 27
|
nndivred |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( ( μ ‘ 𝑑 ) / 𝑛 ) ∈ ℂ ) |
30 |
27
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝑛 ∈ ℝ+ ) |
31 |
22
|
nnrpd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → 𝑑 ∈ ℝ+ ) |
32 |
30 31
|
rpdivcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( 𝑛 / 𝑑 ) ∈ ℝ+ ) |
33 |
32
|
relogcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℝ ) |
34 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
35 |
29 34
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
36 |
20 35
|
mulcld |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ∈ ℂ ) |
37 |
14 15 36
|
dvdsflsumcom |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
38 |
|
vmaf |
⊢ Λ : ℕ ⟶ ℝ |
39 |
38
|
a1i |
⊢ ( 𝜑 → Λ : ℕ ⟶ ℝ ) |
40 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
41 |
|
fss |
⊢ ( ( Λ : ℕ ⟶ ℝ ∧ ℝ ⊆ ℂ ) → Λ : ℕ ⟶ ℂ ) |
42 |
39 40 41
|
sylancl |
⊢ ( 𝜑 → Λ : ℕ ⟶ ℂ ) |
43 |
|
vmasum |
⊢ ( 𝑚 ∈ ℕ → Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( Λ ‘ 𝑖 ) = ( log ‘ 𝑚 ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( Λ ‘ 𝑖 ) = ( log ‘ 𝑚 ) ) |
45 |
44
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( log ‘ 𝑚 ) = Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( Λ ‘ 𝑖 ) ) |
46 |
45
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ Σ 𝑖 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑚 } ( Λ ‘ 𝑖 ) ) ) |
47 |
42 46
|
muinv |
⊢ ( 𝜑 → Λ = ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ) |
48 |
47
|
fveq1d |
⊢ ( 𝜑 → ( Λ ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) ) |
49 |
|
sumex |
⊢ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ∈ V |
50 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) = ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) |
51 |
50
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) |
52 |
26 49 51
|
sylancl |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) |
53 |
48 52
|
sylan9eq |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) ) |
54 |
|
breq1 |
⊢ ( 𝑥 = 𝑑 → ( 𝑥 ∥ 𝑛 ↔ 𝑑 ∥ 𝑛 ) ) |
55 |
54
|
elrab |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ∥ 𝑛 ) ) |
56 |
55
|
simprbi |
⊢ ( 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } → 𝑑 ∥ 𝑛 ) |
57 |
56
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑑 ∥ 𝑛 ) |
58 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
59 |
|
nndivdvds |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑑 ∈ ℕ ) → ( 𝑑 ∥ 𝑛 ↔ ( 𝑛 / 𝑑 ) ∈ ℕ ) ) |
60 |
58 21 59
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( 𝑑 ∥ 𝑛 ↔ ( 𝑛 / 𝑑 ) ∈ ℕ ) ) |
61 |
57 60
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( 𝑛 / 𝑑 ) ∈ ℕ ) |
62 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑛 / 𝑑 ) → ( log ‘ 𝑚 ) = ( log ‘ ( 𝑛 / 𝑑 ) ) ) |
63 |
|
eqid |
⊢ ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) = ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) |
64 |
|
fvex |
⊢ ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ V |
65 |
62 63 64
|
fvmpt |
⊢ ( ( 𝑛 / 𝑑 ) ∈ ℕ → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( 𝑛 / 𝑑 ) ) ) |
66 |
61 65
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) = ( log ‘ ( 𝑛 / 𝑑 ) ) ) |
67 |
66
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) = ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
68 |
67
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( ( 𝑚 ∈ ℕ ↦ ( log ‘ 𝑚 ) ) ‘ ( 𝑛 / 𝑑 ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
69 |
53 68
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Λ ‘ 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
70 |
69
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) = ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) ) |
71 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... 𝑛 ) ∈ Fin ) |
72 |
|
dvdsssfz1 |
⊢ ( 𝑛 ∈ ℕ → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
73 |
58 72
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ⊆ ( 1 ... 𝑛 ) ) |
74 |
71 73
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ∈ Fin ) |
75 |
58
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
76 |
24
|
zcnd |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
77 |
76
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
78 |
34
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( log ‘ ( 𝑛 / 𝑑 ) ) ∈ ℂ ) |
79 |
77 78
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
80 |
58
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
81 |
74 75 79 80
|
fsumdivc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) ) |
82 |
21
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑑 ∈ ℕ ) |
83 |
82 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
84 |
83
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
85 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑛 ∈ ℂ ) |
86 |
80
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → 𝑛 ≠ 0 ) |
87 |
84 78 85 86
|
div23d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
88 |
87
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
89 |
70 81 88
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( Λ ‘ 𝑛 ) / 𝑛 ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) |
90 |
89
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ) |
91 |
35
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ) → ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ∈ ℂ ) |
92 |
74 19 91
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ) |
93 |
90 92
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ) |
94 |
93
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑑 ∈ { 𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑛 } ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑛 ) · ( log ‘ ( 𝑛 / 𝑑 ) ) ) ) ) |
95 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ∈ Fin ) |
96 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑋 ∈ 𝐷 ) |
97 |
|
elfzelz |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑑 ∈ ℤ ) |
98 |
97
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℤ ) |
99 |
4 1 5 2 96 98
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
100 |
|
fznnfl |
⊢ ( 𝐴 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
101 |
15 100
|
syl |
⊢ ( 𝜑 → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝐴 ) ) ) |
102 |
101
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℕ ) |
103 |
102 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
104 |
103
|
zred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℝ ) |
105 |
104 102
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
106 |
105
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
107 |
99 106
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
108 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
109 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℤ ) |
110 |
109
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℤ ) |
111 |
4 1 5 2 108 110
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
112 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
113 |
112
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
114 |
113
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
115 |
114
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
116 |
115 113
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℝ ) |
117 |
116
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( log ‘ 𝑚 ) / 𝑚 ) ∈ ℂ ) |
118 |
111 117
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ∈ ℂ ) |
119 |
95 107 118
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
120 |
99
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
121 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
122 |
120 121 111 117
|
mul4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
123 |
97
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℤ ) |
124 |
4 1 5 2 108 123 110
|
dchrzrhmul |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) ) |
125 |
104
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( μ ‘ 𝑑 ) ∈ ℝ ) |
126 |
125
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
127 |
115
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
128 |
102
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑑 ∈ ℝ+ ) |
129 |
128
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℝ+ ) |
130 |
129 114
|
rpmulcld |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑑 · 𝑚 ) ∈ ℝ+ ) |
131 |
130
|
rpcnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) ∈ ℂ ∧ ( 𝑑 · 𝑚 ) ≠ 0 ) ) |
132 |
|
div23 |
⊢ ( ( ( μ ‘ 𝑑 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ∧ ( ( 𝑑 · 𝑚 ) ∈ ℂ ∧ ( 𝑑 · 𝑚 ) ≠ 0 ) ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) ) |
133 |
126 127 131 132
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) ) |
134 |
129
|
rpcnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ) |
135 |
114
|
rpcnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
136 |
|
divmuldiv |
⊢ ( ( ( ( μ ‘ 𝑑 ) ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ) ∧ ( ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) ) |
137 |
126 127 134 135 136
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( ( μ ‘ 𝑑 ) · ( log ‘ 𝑚 ) ) / ( 𝑑 · 𝑚 ) ) ) |
138 |
113
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑚 ∈ ℂ ) |
139 |
129
|
rpcnd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ∈ ℂ ) |
140 |
129
|
rpne0d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → 𝑑 ≠ 0 ) |
141 |
138 139 140
|
divcan3d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑑 · 𝑚 ) / 𝑑 ) = 𝑚 ) |
142 |
141
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) = ( log ‘ 𝑚 ) ) |
143 |
142
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ 𝑚 ) ) ) |
144 |
133 137 143
|
3eqtr4rd |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) = ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
145 |
124 144
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) = ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / 𝑑 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
146 |
122 145
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
147 |
146
|
sumeq2dv |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
148 |
119 147
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
149 |
148
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ ( 𝑑 · 𝑚 ) ) ) · ( ( ( μ ‘ 𝑑 ) / ( 𝑑 · 𝑚 ) ) · ( log ‘ ( ( 𝑑 · 𝑚 ) / 𝑑 ) ) ) ) ) |
150 |
37 94 149
|
3eqtr4d |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑛 ) ) · ( ( Λ ‘ 𝑛 ) / 𝑛 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |