Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
9 |
|
dchrvmasumif.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
10 |
|
dchrvmasumif.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
11 |
|
dchrvmasumif.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
12 |
|
dchrvmasumif.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / y ) ) |
13 |
|
dchrvmasumif.g |
|- K = ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( ( log ` a ) / a ) ) ) |
14 |
|
dchrvmasumif.e |
|- ( ph -> E e. ( 0 [,) +oo ) ) |
15 |
|
dchrvmasumif.t |
|- ( ph -> seq 1 ( + , K ) ~~> T ) |
16 |
|
dchrvmasumif.2 |
|- ( ph -> A. y e. ( 3 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E x. ( ( log ` y ) / y ) ) ) |
17 |
|
1red |
|- ( ph -> 1 e. RR ) |
18 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
19 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
20 |
|
elfzelz |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. ZZ ) |
21 |
20
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. ZZ ) |
22 |
4 1 5 2 19 21
|
dchrzrhcl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` d ) ) e. CC ) |
23 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
24 |
23
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) |
25 |
|
mucl |
|- ( d e. NN -> ( mmu ` d ) e. ZZ ) |
26 |
24 25
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` d ) e. ZZ ) |
27 |
26
|
zred |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( mmu ` d ) e. RR ) |
28 |
27 24
|
nndivred |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` d ) / d ) e. RR ) |
29 |
28
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( mmu ` d ) / d ) e. CC ) |
30 |
22 29
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) e. CC ) |
31 |
18 30
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) e. CC ) |
32 |
|
climcl |
|- ( seq 1 ( + , F ) ~~> S -> S e. CC ) |
33 |
11 32
|
syl |
|- ( ph -> S e. CC ) |
34 |
33
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> S e. CC ) |
35 |
31 34
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) e. CC ) |
36 |
|
0cnd |
|- ( ( ph /\ S = 0 ) -> 0 e. CC ) |
37 |
|
df-ne |
|- ( S =/= 0 <-> -. S = 0 ) |
38 |
|
climcl |
|- ( seq 1 ( + , K ) ~~> T -> T e. CC ) |
39 |
15 38
|
syl |
|- ( ph -> T e. CC ) |
40 |
39
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> T e. CC ) |
41 |
33
|
adantr |
|- ( ( ph /\ S =/= 0 ) -> S e. CC ) |
42 |
|
simpr |
|- ( ( ph /\ S =/= 0 ) -> S =/= 0 ) |
43 |
40 41 42
|
divcld |
|- ( ( ph /\ S =/= 0 ) -> ( T / S ) e. CC ) |
44 |
37 43
|
sylan2br |
|- ( ( ph /\ -. S = 0 ) -> ( T / S ) e. CC ) |
45 |
36 44
|
ifclda |
|- ( ph -> if ( S = 0 , 0 , ( T / S ) ) e. CC ) |
46 |
45
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> if ( S = 0 , 0 , ( T / S ) ) e. CC ) |
47 |
1 2 3 4 5 6 7 8 9 10 11 12
|
dchrmusum2 |
|- ( ph -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) ) e. O(1) ) |
48 |
|
rpssre |
|- RR+ C_ RR |
49 |
|
o1const |
|- ( ( RR+ C_ RR /\ if ( S = 0 , 0 , ( T / S ) ) e. CC ) -> ( x e. RR+ |-> if ( S = 0 , 0 , ( T / S ) ) ) e. O(1) ) |
50 |
48 45 49
|
sylancr |
|- ( ph -> ( x e. RR+ |-> if ( S = 0 , 0 , ( T / S ) ) ) e. O(1) ) |
51 |
35 46 47 50
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) e. O(1) ) |
52 |
|
fzfid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 ... ( |_ ` ( x / d ) ) ) e. Fin ) |
53 |
19
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> X e. D ) |
54 |
|
elfzelz |
|- ( k e. ( 1 ... ( |_ ` ( x / d ) ) ) -> k e. ZZ ) |
55 |
54
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> k e. ZZ ) |
56 |
4 1 5 2 53 55
|
dchrzrhcl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( X ` ( L ` k ) ) e. CC ) |
57 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
58 |
23
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) |
59 |
|
rpdivcl |
|- ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) |
60 |
57 58 59
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) |
61 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` ( x / d ) ) ) -> k e. NN ) |
62 |
61
|
nnrpd |
|- ( k e. ( 1 ... ( |_ ` ( x / d ) ) ) -> k e. RR+ ) |
63 |
|
ifcl |
|- ( ( ( x / d ) e. RR+ /\ k e. RR+ ) -> if ( S = 0 , ( x / d ) , k ) e. RR+ ) |
64 |
60 62 63
|
syl2an |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> if ( S = 0 , ( x / d ) , k ) e. RR+ ) |
65 |
64
|
relogcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( log ` if ( S = 0 , ( x / d ) , k ) ) e. RR ) |
66 |
61
|
adantl |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> k e. NN ) |
67 |
65 66
|
nndivred |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) e. RR ) |
68 |
67
|
recnd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) e. CC ) |
69 |
56 68
|
mulcld |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) e. CC ) |
70 |
52 69
|
fsumcl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) e. CC ) |
71 |
30 70
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) e. CC ) |
72 |
18 71
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) e. CC ) |
73 |
35 46
|
mulcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) e. CC ) |
74 |
|
0cn |
|- 0 e. CC |
75 |
39
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> T e. CC ) |
76 |
|
ifcl |
|- ( ( 0 e. CC /\ T e. CC ) -> if ( S = 0 , 0 , T ) e. CC ) |
77 |
74 75 76
|
sylancr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> if ( S = 0 , 0 , T ) e. CC ) |
78 |
30 70 77
|
subdid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = ( ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) ) |
79 |
78
|
sumeq2dv |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) ) |
80 |
30 77
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) e. CC ) |
81 |
18 71 80
|
fsumsub |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) ) |
82 |
31 34 46
|
mulassd |
|- ( ( ph /\ x e. RR+ ) -> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( S x. if ( S = 0 , 0 , ( T / S ) ) ) ) ) |
83 |
|
ovif2 |
|- ( S x. if ( S = 0 , 0 , ( T / S ) ) ) = if ( S = 0 , ( S x. 0 ) , ( S x. ( T / S ) ) ) |
84 |
33
|
mul01d |
|- ( ph -> ( S x. 0 ) = 0 ) |
85 |
84
|
ifeq1d |
|- ( ph -> if ( S = 0 , ( S x. 0 ) , ( S x. ( T / S ) ) ) = if ( S = 0 , 0 , ( S x. ( T / S ) ) ) ) |
86 |
40 41 42
|
divcan2d |
|- ( ( ph /\ S =/= 0 ) -> ( S x. ( T / S ) ) = T ) |
87 |
37 86
|
sylan2br |
|- ( ( ph /\ -. S = 0 ) -> ( S x. ( T / S ) ) = T ) |
88 |
87
|
ifeq2da |
|- ( ph -> if ( S = 0 , 0 , ( S x. ( T / S ) ) ) = if ( S = 0 , 0 , T ) ) |
89 |
85 88
|
eqtrd |
|- ( ph -> if ( S = 0 , ( S x. 0 ) , ( S x. ( T / S ) ) ) = if ( S = 0 , 0 , T ) ) |
90 |
83 89
|
eqtrid |
|- ( ph -> ( S x. if ( S = 0 , 0 , ( T / S ) ) ) = if ( S = 0 , 0 , T ) ) |
91 |
90
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( S x. if ( S = 0 , 0 , ( T / S ) ) ) = if ( S = 0 , 0 , T ) ) |
92 |
91
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( S x. if ( S = 0 , 0 , ( T / S ) ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) |
93 |
74 39 76
|
sylancr |
|- ( ph -> if ( S = 0 , 0 , T ) e. CC ) |
94 |
93
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> if ( S = 0 , 0 , T ) e. CC ) |
95 |
18 94 30
|
fsummulc1 |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) |
96 |
82 92 95
|
3eqtrrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) = ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) |
97 |
96
|
oveq2d |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. if ( S = 0 , 0 , T ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) ) |
98 |
79 81 97
|
3eqtrd |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) ) |
99 |
98
|
mpteq2dva |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) ) = ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) ) ) |
100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
dchrvmasumiflem1 |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) ) e. O(1) ) |
101 |
99 100
|
eqeltrrd |
|- ( ph -> ( x e. RR+ |-> ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) - ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) ) e. O(1) ) |
102 |
72 73 101
|
o1dif |
|- ( ph -> ( ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) ) e. O(1) <-> ( x e. RR+ |-> ( ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. S ) x. if ( S = 0 , 0 , ( T / S ) ) ) ) e. O(1) ) ) |
103 |
51 102
|
mpbird |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) ) e. O(1) ) |
104 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> X e. D ) |
105 |
|
elfzelz |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. ZZ ) |
106 |
105
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. ZZ ) |
107 |
4 1 5 2 104 106
|
dchrzrhcl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( X ` ( L ` n ) ) e. CC ) |
108 |
|
elfznn |
|- ( n e. ( 1 ... ( |_ ` x ) ) -> n e. NN ) |
109 |
108
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> n e. NN ) |
110 |
|
vmacl |
|- ( n e. NN -> ( Lam ` n ) e. RR ) |
111 |
|
nndivre |
|- ( ( ( Lam ` n ) e. RR /\ n e. NN ) -> ( ( Lam ` n ) / n ) e. RR ) |
112 |
110 111
|
mpancom |
|- ( n e. NN -> ( ( Lam ` n ) / n ) e. RR ) |
113 |
109 112
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. RR ) |
114 |
113
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( Lam ` n ) / n ) e. CC ) |
115 |
107 114
|
mulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ n e. ( 1 ... ( |_ ` x ) ) ) -> ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
116 |
18 115
|
fsumcl |
|- ( ( ph /\ x e. RR+ ) -> sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) e. CC ) |
117 |
|
relogcl |
|- ( x e. RR+ -> ( log ` x ) e. RR ) |
118 |
117
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
119 |
118
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
120 |
|
ifcl |
|- ( ( ( log ` x ) e. CC /\ 0 e. CC ) -> if ( S = 0 , ( log ` x ) , 0 ) e. CC ) |
121 |
119 74 120
|
sylancl |
|- ( ( ph /\ x e. RR+ ) -> if ( S = 0 , ( log ` x ) , 0 ) e. CC ) |
122 |
116 121
|
addcld |
|- ( ( ph /\ x e. RR+ ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) e. CC ) |
123 |
122
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) ) e. RR ) |
124 |
123
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) ) e. RR ) |
125 |
3
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> N e. NN ) |
126 |
7
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> X e. D ) |
127 |
8
|
adantr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> X =/= .1. ) |
128 |
|
simprl |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> x e. RR+ ) |
129 |
|
simprr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> 1 <_ x ) |
130 |
1 2 125 4 5 6 126 127 128 129
|
dchrvmasum2if |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) ) |
131 |
130
|
fveq2d |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) ) = ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) ) ) |
132 |
124 131
|
eqled |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) ) <_ ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) ) ) |
133 |
17 103 72 122 132
|
o1le |
|- ( ph -> ( x e. RR+ |-> ( sum_ n e. ( 1 ... ( |_ ` x ) ) ( ( X ` ( L ` n ) ) x. ( ( Lam ` n ) / n ) ) + if ( S = 0 , ( log ` x ) , 0 ) ) ) e. O(1) ) |