| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
| 8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
| 9 |
|
dchrvmasumif.f |
|- F = ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) |
| 10 |
|
dchrvmasumif.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 11 |
|
dchrvmasumif.s |
|- ( ph -> seq 1 ( + , F ) ~~> S ) |
| 12 |
|
dchrvmasumif.1 |
|- ( ph -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / y ) ) |
| 13 |
|
dchrvmasumif.g |
|- K = ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( ( log ` a ) / a ) ) ) |
| 14 |
|
dchrvmasumif.e |
|- ( ph -> E e. ( 0 [,) +oo ) ) |
| 15 |
|
dchrvmasumif.t |
|- ( ph -> seq 1 ( + , K ) ~~> T ) |
| 16 |
|
dchrvmasumif.2 |
|- ( ph -> A. y e. ( 3 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E x. ( ( log ` y ) / y ) ) ) |
| 17 |
|
fzfid |
|- ( ( ph /\ m e. RR+ ) -> ( 1 ... ( |_ ` m ) ) e. Fin ) |
| 18 |
|
simpl |
|- ( ( ph /\ m e. RR+ ) -> ph ) |
| 19 |
|
elfznn |
|- ( k e. ( 1 ... ( |_ ` m ) ) -> k e. NN ) |
| 20 |
7
|
adantr |
|- ( ( ph /\ k e. NN ) -> X e. D ) |
| 21 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. ZZ ) |
| 23 |
4 1 5 2 20 22
|
dchrzrhcl |
|- ( ( ph /\ k e. NN ) -> ( X ` ( L ` k ) ) e. CC ) |
| 24 |
18 19 23
|
syl2an |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( X ` ( L ` k ) ) e. CC ) |
| 25 |
|
simpr |
|- ( ( ph /\ m e. RR+ ) -> m e. RR+ ) |
| 26 |
19
|
nnrpd |
|- ( k e. ( 1 ... ( |_ ` m ) ) -> k e. RR+ ) |
| 27 |
|
ifcl |
|- ( ( m e. RR+ /\ k e. RR+ ) -> if ( S = 0 , m , k ) e. RR+ ) |
| 28 |
25 26 27
|
syl2an |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> if ( S = 0 , m , k ) e. RR+ ) |
| 29 |
28
|
relogcld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( log ` if ( S = 0 , m , k ) ) e. RR ) |
| 30 |
19
|
adantl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> k e. NN ) |
| 31 |
29 30
|
nndivred |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) e. RR ) |
| 32 |
31
|
recnd |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) e. CC ) |
| 33 |
24 32
|
mulcld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 34 |
17 33
|
fsumcl |
|- ( ( ph /\ m e. RR+ ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 35 |
|
fveq2 |
|- ( m = ( x / d ) -> ( |_ ` m ) = ( |_ ` ( x / d ) ) ) |
| 36 |
35
|
oveq2d |
|- ( m = ( x / d ) -> ( 1 ... ( |_ ` m ) ) = ( 1 ... ( |_ ` ( x / d ) ) ) ) |
| 37 |
|
ifeq1 |
|- ( m = ( x / d ) -> if ( S = 0 , m , k ) = if ( S = 0 , ( x / d ) , k ) ) |
| 38 |
37
|
fveq2d |
|- ( m = ( x / d ) -> ( log ` if ( S = 0 , m , k ) ) = ( log ` if ( S = 0 , ( x / d ) , k ) ) ) |
| 39 |
38
|
oveq1d |
|- ( m = ( x / d ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) = ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) |
| 40 |
39
|
oveq2d |
|- ( m = ( x / d ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) |
| 41 |
40
|
adantr |
|- ( ( m = ( x / d ) /\ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) |
| 42 |
36 41
|
sumeq12rdv |
|- ( m = ( x / d ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) ) |
| 43 |
10 14
|
ifcld |
|- ( ph -> if ( S = 0 , C , E ) e. ( 0 [,) +oo ) ) |
| 44 |
|
0cn |
|- 0 e. CC |
| 45 |
|
climcl |
|- ( seq 1 ( + , K ) ~~> T -> T e. CC ) |
| 46 |
15 45
|
syl |
|- ( ph -> T e. CC ) |
| 47 |
|
ifcl |
|- ( ( 0 e. CC /\ T e. CC ) -> if ( S = 0 , 0 , T ) e. CC ) |
| 48 |
44 46 47
|
sylancr |
|- ( ph -> if ( S = 0 , 0 , T ) e. CC ) |
| 49 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 50 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 51 |
|
nncn |
|- ( k e. NN -> k e. CC ) |
| 52 |
51
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. CC ) |
| 53 |
|
nnne0 |
|- ( k e. NN -> k =/= 0 ) |
| 54 |
53
|
adantl |
|- ( ( ph /\ k e. NN ) -> k =/= 0 ) |
| 55 |
23 52 54
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( ( X ` ( L ` k ) ) / k ) e. CC ) |
| 56 |
|
2fveq3 |
|- ( a = k -> ( X ` ( L ` a ) ) = ( X ` ( L ` k ) ) ) |
| 57 |
|
id |
|- ( a = k -> a = k ) |
| 58 |
56 57
|
oveq12d |
|- ( a = k -> ( ( X ` ( L ` a ) ) / a ) = ( ( X ` ( L ` k ) ) / k ) ) |
| 59 |
58
|
cbvmptv |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) / a ) ) = ( k e. NN |-> ( ( X ` ( L ` k ) ) / k ) ) |
| 60 |
9 59
|
eqtri |
|- F = ( k e. NN |-> ( ( X ` ( L ` k ) ) / k ) ) |
| 61 |
55 60
|
fmptd |
|- ( ph -> F : NN --> CC ) |
| 62 |
|
ffvelcdm |
|- ( ( F : NN --> CC /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 63 |
61 62
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. CC ) |
| 64 |
49 50 63
|
serf |
|- ( ph -> seq 1 ( + , F ) : NN --> CC ) |
| 65 |
64
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> seq 1 ( + , F ) : NN --> CC ) |
| 66 |
|
3re |
|- 3 e. RR |
| 67 |
|
elicopnf |
|- ( 3 e. RR -> ( m e. ( 3 [,) +oo ) <-> ( m e. RR /\ 3 <_ m ) ) ) |
| 68 |
66 67
|
mp1i |
|- ( ph -> ( m e. ( 3 [,) +oo ) <-> ( m e. RR /\ 3 <_ m ) ) ) |
| 69 |
68
|
simprbda |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> m e. RR ) |
| 70 |
|
1red |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 1 e. RR ) |
| 71 |
66
|
a1i |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 3 e. RR ) |
| 72 |
|
1le3 |
|- 1 <_ 3 |
| 73 |
72
|
a1i |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 1 <_ 3 ) |
| 74 |
68
|
simplbda |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 3 <_ m ) |
| 75 |
70 71 69 73 74
|
letrd |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 1 <_ m ) |
| 76 |
|
flge1nn |
|- ( ( m e. RR /\ 1 <_ m ) -> ( |_ ` m ) e. NN ) |
| 77 |
69 75 76
|
syl2anc |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( |_ ` m ) e. NN ) |
| 78 |
77
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( |_ ` m ) e. NN ) |
| 79 |
65 78
|
ffvelcdmd |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( seq 1 ( + , F ) ` ( |_ ` m ) ) e. CC ) |
| 80 |
79
|
abscld |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) e. RR ) |
| 81 |
|
simpl |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ph ) |
| 82 |
|
0red |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 0 e. RR ) |
| 83 |
|
3pos |
|- 0 < 3 |
| 84 |
83
|
a1i |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 0 < 3 ) |
| 85 |
82 71 69 84 74
|
ltletrd |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 0 < m ) |
| 86 |
69 85
|
elrpd |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> m e. RR+ ) |
| 87 |
81 86
|
jca |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( ph /\ m e. RR+ ) ) |
| 88 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
| 89 |
88
|
simplbi |
|- ( C e. ( 0 [,) +oo ) -> C e. RR ) |
| 90 |
10 89
|
syl |
|- ( ph -> C e. RR ) |
| 91 |
|
rerpdivcl |
|- ( ( C e. RR /\ m e. RR+ ) -> ( C / m ) e. RR ) |
| 92 |
90 91
|
sylan |
|- ( ( ph /\ m e. RR+ ) -> ( C / m ) e. RR ) |
| 93 |
87 92
|
syl |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( C / m ) e. RR ) |
| 94 |
93
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( C / m ) e. RR ) |
| 95 |
86
|
relogcld |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( log ` m ) e. RR ) |
| 96 |
69 75
|
logge0d |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> 0 <_ ( log ` m ) ) |
| 97 |
95 96
|
jca |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( ( log ` m ) e. RR /\ 0 <_ ( log ` m ) ) ) |
| 98 |
97
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( ( log ` m ) e. RR /\ 0 <_ ( log ` m ) ) ) |
| 99 |
|
oveq2 |
|- ( S = 0 -> ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) = ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - 0 ) ) |
| 100 |
64
|
adantr |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> seq 1 ( + , F ) : NN --> CC ) |
| 101 |
100 77
|
ffvelcdmd |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( seq 1 ( + , F ) ` ( |_ ` m ) ) e. CC ) |
| 102 |
101
|
subid1d |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - 0 ) = ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) |
| 103 |
99 102
|
sylan9eqr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) = ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) |
| 104 |
103
|
fveq2d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) ) = ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) |
| 105 |
|
2fveq3 |
|- ( y = m -> ( seq 1 ( + , F ) ` ( |_ ` y ) ) = ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) |
| 106 |
105
|
fvoveq1d |
|- ( y = m -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) = ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) ) ) |
| 107 |
|
oveq2 |
|- ( y = m -> ( C / y ) = ( C / m ) ) |
| 108 |
106 107
|
breq12d |
|- ( y = m -> ( ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / y ) <-> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) ) <_ ( C / m ) ) ) |
| 109 |
12
|
adantr |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> A. y e. ( 1 [,) +oo ) ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` y ) ) - S ) ) <_ ( C / y ) ) |
| 110 |
|
1re |
|- 1 e. RR |
| 111 |
|
elicopnf |
|- ( 1 e. RR -> ( m e. ( 1 [,) +oo ) <-> ( m e. RR /\ 1 <_ m ) ) ) |
| 112 |
110 111
|
ax-mp |
|- ( m e. ( 1 [,) +oo ) <-> ( m e. RR /\ 1 <_ m ) ) |
| 113 |
69 75 112
|
sylanbrc |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> m e. ( 1 [,) +oo ) ) |
| 114 |
108 109 113
|
rspcdva |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) ) <_ ( C / m ) ) |
| 115 |
114
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( ( seq 1 ( + , F ) ` ( |_ ` m ) ) - S ) ) <_ ( C / m ) ) |
| 116 |
104 115
|
eqbrtrrd |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) <_ ( C / m ) ) |
| 117 |
|
lemul2a |
|- ( ( ( ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) e. RR /\ ( C / m ) e. RR /\ ( ( log ` m ) e. RR /\ 0 <_ ( log ` m ) ) ) /\ ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) <_ ( C / m ) ) -> ( ( log ` m ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) <_ ( ( log ` m ) x. ( C / m ) ) ) |
| 118 |
80 94 98 116 117
|
syl31anc |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( ( log ` m ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) <_ ( ( log ` m ) x. ( C / m ) ) ) |
| 119 |
|
iftrue |
|- ( S = 0 -> if ( S = 0 , m , k ) = m ) |
| 120 |
119
|
fveq2d |
|- ( S = 0 -> ( log ` if ( S = 0 , m , k ) ) = ( log ` m ) ) |
| 121 |
120
|
oveq1d |
|- ( S = 0 -> ( ( log ` if ( S = 0 , m , k ) ) / k ) = ( ( log ` m ) / k ) ) |
| 122 |
121
|
ad2antlr |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) = ( ( log ` m ) / k ) ) |
| 123 |
122
|
oveq2d |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` m ) / k ) ) ) |
| 124 |
24
|
adantlr |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( X ` ( L ` k ) ) e. CC ) |
| 125 |
|
relogcl |
|- ( m e. RR+ -> ( log ` m ) e. RR ) |
| 126 |
125
|
adantl |
|- ( ( ph /\ m e. RR+ ) -> ( log ` m ) e. RR ) |
| 127 |
126
|
recnd |
|- ( ( ph /\ m e. RR+ ) -> ( log ` m ) e. CC ) |
| 128 |
127
|
ad2antrr |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( log ` m ) e. CC ) |
| 129 |
19
|
adantl |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> k e. NN ) |
| 130 |
129
|
nncnd |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> k e. CC ) |
| 131 |
129
|
nnne0d |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> k =/= 0 ) |
| 132 |
124 128 130 131
|
div12d |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` m ) / k ) ) = ( ( log ` m ) x. ( ( X ` ( L ` k ) ) / k ) ) ) |
| 133 |
123 132
|
eqtrd |
|- ( ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( log ` m ) x. ( ( X ` ( L ` k ) ) / k ) ) ) |
| 134 |
133
|
sumeq2dv |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( log ` m ) x. ( ( X ` ( L ` k ) ) / k ) ) ) |
| 135 |
|
iftrue |
|- ( S = 0 -> if ( S = 0 , 0 , T ) = 0 ) |
| 136 |
135
|
oveq2d |
|- ( S = 0 -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - 0 ) ) |
| 137 |
34
|
subid1d |
|- ( ( ph /\ m e. RR+ ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - 0 ) = sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) |
| 138 |
136 137
|
sylan9eqr |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) |
| 139 |
|
ovex |
|- ( ( X ` ( L ` k ) ) / k ) e. _V |
| 140 |
58 9 139
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = ( ( X ` ( L ` k ) ) / k ) ) |
| 141 |
30 140
|
syl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( F ` k ) = ( ( X ` ( L ` k ) ) / k ) ) |
| 142 |
61
|
adantr |
|- ( ( ph /\ m e. RR+ ) -> F : NN --> CC ) |
| 143 |
142 19 62
|
syl2an |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( F ` k ) e. CC ) |
| 144 |
141 143
|
eqeltrrd |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) / k ) e. CC ) |
| 145 |
17 127 144
|
fsummulc2 |
|- ( ( ph /\ m e. RR+ ) -> ( ( log ` m ) x. sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) ) = sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( log ` m ) x. ( ( X ` ( L ` k ) ) / k ) ) ) |
| 146 |
145
|
adantr |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( ( log ` m ) x. sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) ) = sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( log ` m ) x. ( ( X ` ( L ` k ) ) / k ) ) ) |
| 147 |
134 138 146
|
3eqtr4d |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = ( ( log ` m ) x. sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) ) ) |
| 148 |
87 147
|
sylan |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = ( ( log ` m ) x. sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) ) ) |
| 149 |
87 141
|
sylan |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( F ` k ) = ( ( X ` ( L ` k ) ) / k ) ) |
| 150 |
77 49
|
eleqtrdi |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( |_ ` m ) e. ( ZZ>= ` 1 ) ) |
| 151 |
81 19 55
|
syl2an |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) / k ) e. CC ) |
| 152 |
149 150 151
|
fsumser |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) = ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) |
| 153 |
152
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) = ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) |
| 154 |
153
|
oveq2d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( ( log ` m ) x. sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) / k ) ) = ( ( log ` m ) x. ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) |
| 155 |
148 154
|
eqtrd |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = ( ( log ` m ) x. ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) |
| 156 |
155
|
fveq2d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = ( abs ` ( ( log ` m ) x. ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) ) |
| 157 |
125
|
ad2antlr |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( log ` m ) e. RR ) |
| 158 |
157
|
recnd |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( log ` m ) e. CC ) |
| 159 |
87 158
|
sylan |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( log ` m ) e. CC ) |
| 160 |
159 79
|
absmuld |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( ( log ` m ) x. ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) = ( ( abs ` ( log ` m ) ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) ) |
| 161 |
95 96
|
absidd |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( log ` m ) ) = ( log ` m ) ) |
| 162 |
161
|
oveq1d |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( ( abs ` ( log ` m ) ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) = ( ( log ` m ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) ) |
| 163 |
162
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( ( abs ` ( log ` m ) ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) = ( ( log ` m ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) ) |
| 164 |
156 160 163
|
3eqtrd |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = ( ( log ` m ) x. ( abs ` ( seq 1 ( + , F ) ` ( |_ ` m ) ) ) ) ) |
| 165 |
|
iftrue |
|- ( S = 0 -> if ( S = 0 , C , E ) = C ) |
| 166 |
165
|
adantl |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> if ( S = 0 , C , E ) = C ) |
| 167 |
166
|
oveq1d |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) = ( C x. ( ( log ` m ) / m ) ) ) |
| 168 |
90
|
recnd |
|- ( ph -> C e. CC ) |
| 169 |
168
|
ad2antrr |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> C e. CC ) |
| 170 |
|
rpcnne0 |
|- ( m e. RR+ -> ( m e. CC /\ m =/= 0 ) ) |
| 171 |
170
|
ad2antlr |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( m e. CC /\ m =/= 0 ) ) |
| 172 |
|
div12 |
|- ( ( C e. CC /\ ( log ` m ) e. CC /\ ( m e. CC /\ m =/= 0 ) ) -> ( C x. ( ( log ` m ) / m ) ) = ( ( log ` m ) x. ( C / m ) ) ) |
| 173 |
169 158 171 172
|
syl3anc |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( C x. ( ( log ` m ) / m ) ) = ( ( log ` m ) x. ( C / m ) ) ) |
| 174 |
167 173
|
eqtrd |
|- ( ( ( ph /\ m e. RR+ ) /\ S = 0 ) -> ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) = ( ( log ` m ) x. ( C / m ) ) ) |
| 175 |
87 174
|
sylan |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) = ( ( log ` m ) x. ( C / m ) ) ) |
| 176 |
118 164 175
|
3brtr4d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S = 0 ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) ) |
| 177 |
|
2fveq3 |
|- ( y = m -> ( seq 1 ( + , K ) ` ( |_ ` y ) ) = ( seq 1 ( + , K ) ` ( |_ ` m ) ) ) |
| 178 |
177
|
fvoveq1d |
|- ( y = m -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) ) |
| 179 |
|
fveq2 |
|- ( y = m -> ( log ` y ) = ( log ` m ) ) |
| 180 |
|
id |
|- ( y = m -> y = m ) |
| 181 |
179 180
|
oveq12d |
|- ( y = m -> ( ( log ` y ) / y ) = ( ( log ` m ) / m ) ) |
| 182 |
181
|
oveq2d |
|- ( y = m -> ( E x. ( ( log ` y ) / y ) ) = ( E x. ( ( log ` m ) / m ) ) ) |
| 183 |
178 182
|
breq12d |
|- ( y = m -> ( ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E x. ( ( log ` y ) / y ) ) <-> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) <_ ( E x. ( ( log ` m ) / m ) ) ) ) |
| 184 |
183
|
rspccva |
|- ( ( A. y e. ( 3 [,) +oo ) ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` y ) ) - T ) ) <_ ( E x. ( ( log ` y ) / y ) ) /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) <_ ( E x. ( ( log ` m ) / m ) ) ) |
| 185 |
16 184
|
sylan |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) <_ ( E x. ( ( log ` m ) / m ) ) ) |
| 186 |
185
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) <_ ( E x. ( ( log ` m ) / m ) ) ) |
| 187 |
|
fveq2 |
|- ( a = k -> ( log ` a ) = ( log ` k ) ) |
| 188 |
187 57
|
oveq12d |
|- ( a = k -> ( ( log ` a ) / a ) = ( ( log ` k ) / k ) ) |
| 189 |
56 188
|
oveq12d |
|- ( a = k -> ( ( X ` ( L ` a ) ) x. ( ( log ` a ) / a ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 190 |
|
ovex |
|- ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) e. _V |
| 191 |
189 13 190
|
fvmpt |
|- ( k e. NN -> ( K ` k ) = ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 192 |
19 191
|
syl |
|- ( k e. ( 1 ... ( |_ ` m ) ) -> ( K ` k ) = ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 193 |
|
ifnefalse |
|- ( S =/= 0 -> if ( S = 0 , m , k ) = k ) |
| 194 |
193
|
fveq2d |
|- ( S =/= 0 -> ( log ` if ( S = 0 , m , k ) ) = ( log ` k ) ) |
| 195 |
194
|
oveq1d |
|- ( S =/= 0 -> ( ( log ` if ( S = 0 , m , k ) ) / k ) = ( ( log ` k ) / k ) ) |
| 196 |
195
|
oveq2d |
|- ( S =/= 0 -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 197 |
196
|
adantl |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 198 |
197
|
eqcomd |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) = ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) |
| 199 |
192 198
|
sylan9eqr |
|- ( ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( K ` k ) = ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) |
| 200 |
150
|
adantr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( |_ ` m ) e. ( ZZ>= ` 1 ) ) |
| 201 |
|
nnrp |
|- ( k e. NN -> k e. RR+ ) |
| 202 |
201
|
adantl |
|- ( ( ph /\ k e. NN ) -> k e. RR+ ) |
| 203 |
202
|
relogcld |
|- ( ( ph /\ k e. NN ) -> ( log ` k ) e. RR ) |
| 204 |
203
|
recnd |
|- ( ( ph /\ k e. NN ) -> ( log ` k ) e. CC ) |
| 205 |
204 52 54
|
divcld |
|- ( ( ph /\ k e. NN ) -> ( ( log ` k ) / k ) e. CC ) |
| 206 |
23 205
|
mulcld |
|- ( ( ph /\ k e. NN ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) e. CC ) |
| 207 |
189
|
cbvmptv |
|- ( a e. NN |-> ( ( X ` ( L ` a ) ) x. ( ( log ` a ) / a ) ) ) = ( k e. NN |-> ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 208 |
13 207
|
eqtri |
|- K = ( k e. NN |-> ( ( X ` ( L ` k ) ) x. ( ( log ` k ) / k ) ) ) |
| 209 |
206 208
|
fmptd |
|- ( ph -> K : NN --> CC ) |
| 210 |
209
|
ad2antrr |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> K : NN --> CC ) |
| 211 |
|
ffvelcdm |
|- ( ( K : NN --> CC /\ k e. NN ) -> ( K ` k ) e. CC ) |
| 212 |
210 19 211
|
syl2an |
|- ( ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( K ` k ) e. CC ) |
| 213 |
199 212
|
eqeltrrd |
|- ( ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 214 |
199 200 213
|
fsumser |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( seq 1 ( + , K ) ` ( |_ ` m ) ) ) |
| 215 |
|
ifnefalse |
|- ( S =/= 0 -> if ( S = 0 , 0 , T ) = T ) |
| 216 |
215
|
adantl |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> if ( S = 0 , 0 , T ) = T ) |
| 217 |
214 216
|
oveq12d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) = ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) |
| 218 |
217
|
fveq2d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) = ( abs ` ( ( seq 1 ( + , K ) ` ( |_ ` m ) ) - T ) ) ) |
| 219 |
|
ifnefalse |
|- ( S =/= 0 -> if ( S = 0 , C , E ) = E ) |
| 220 |
219
|
adantl |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> if ( S = 0 , C , E ) = E ) |
| 221 |
220
|
oveq1d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) = ( E x. ( ( log ` m ) / m ) ) ) |
| 222 |
186 218 221
|
3brtr4d |
|- ( ( ( ph /\ m e. ( 3 [,) +oo ) ) /\ S =/= 0 ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) ) |
| 223 |
176 222
|
pm2.61dane |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( if ( S = 0 , C , E ) x. ( ( log ` m ) / m ) ) ) |
| 224 |
|
fzfid |
|- ( ph -> ( 1 ... 2 ) e. Fin ) |
| 225 |
7
|
adantr |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> X e. D ) |
| 226 |
|
elfzelz |
|- ( k e. ( 1 ... 2 ) -> k e. ZZ ) |
| 227 |
226
|
adantl |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> k e. ZZ ) |
| 228 |
4 1 5 2 225 227
|
dchrzrhcl |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( X ` ( L ` k ) ) e. CC ) |
| 229 |
228
|
abscld |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( X ` ( L ` k ) ) ) e. RR ) |
| 230 |
|
3rp |
|- 3 e. RR+ |
| 231 |
|
relogcl |
|- ( 3 e. RR+ -> ( log ` 3 ) e. RR ) |
| 232 |
230 231
|
ax-mp |
|- ( log ` 3 ) e. RR |
| 233 |
|
elfznn |
|- ( k e. ( 1 ... 2 ) -> k e. NN ) |
| 234 |
233
|
adantl |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> k e. NN ) |
| 235 |
|
nndivre |
|- ( ( ( log ` 3 ) e. RR /\ k e. NN ) -> ( ( log ` 3 ) / k ) e. RR ) |
| 236 |
232 234 235
|
sylancr |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( ( log ` 3 ) / k ) e. RR ) |
| 237 |
229 236
|
remulcld |
|- ( ( ph /\ k e. ( 1 ... 2 ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) e. RR ) |
| 238 |
224 237
|
fsumrecl |
|- ( ph -> sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) e. RR ) |
| 239 |
48
|
abscld |
|- ( ph -> ( abs ` if ( S = 0 , 0 , T ) ) e. RR ) |
| 240 |
238 239
|
readdcld |
|- ( ph -> ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) e. RR ) |
| 241 |
|
simpl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ph ) |
| 242 |
66
|
rexri |
|- 3 e. RR* |
| 243 |
|
elico2 |
|- ( ( 1 e. RR /\ 3 e. RR* ) -> ( m e. ( 1 [,) 3 ) <-> ( m e. RR /\ 1 <_ m /\ m < 3 ) ) ) |
| 244 |
110 242 243
|
mp2an |
|- ( m e. ( 1 [,) 3 ) <-> ( m e. RR /\ 1 <_ m /\ m < 3 ) ) |
| 245 |
244
|
simp1bi |
|- ( m e. ( 1 [,) 3 ) -> m e. RR ) |
| 246 |
245
|
adantl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> m e. RR ) |
| 247 |
|
0red |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 e. RR ) |
| 248 |
|
1red |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 1 e. RR ) |
| 249 |
|
0lt1 |
|- 0 < 1 |
| 250 |
249
|
a1i |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 < 1 ) |
| 251 |
244
|
simp2bi |
|- ( m e. ( 1 [,) 3 ) -> 1 <_ m ) |
| 252 |
251
|
adantl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 1 <_ m ) |
| 253 |
247 248 246 250 252
|
ltletrd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 < m ) |
| 254 |
246 253
|
elrpd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> m e. RR+ ) |
| 255 |
241 254
|
jca |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( ph /\ m e. RR+ ) ) |
| 256 |
48
|
adantr |
|- ( ( ph /\ m e. RR+ ) -> if ( S = 0 , 0 , T ) e. CC ) |
| 257 |
34 256
|
subcld |
|- ( ( ph /\ m e. RR+ ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) e. CC ) |
| 258 |
255 257
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) e. CC ) |
| 259 |
258
|
abscld |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) e. RR ) |
| 260 |
255 34
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 261 |
260
|
abscld |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 262 |
239
|
adantr |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` if ( S = 0 , 0 , T ) ) e. RR ) |
| 263 |
261 262
|
readdcld |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) e. RR ) |
| 264 |
238
|
adantr |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) e. RR ) |
| 265 |
264 262
|
readdcld |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) e. RR ) |
| 266 |
34 256
|
abs2dif2d |
|- ( ( ph /\ m e. RR+ ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) |
| 267 |
255 266
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) |
| 268 |
33
|
abscld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... ( |_ ` m ) ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 269 |
17 268
|
fsumrecl |
|- ( ( ph /\ m e. RR+ ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 270 |
255 269
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 271 |
17 33
|
fsumabs |
|- ( ( ph /\ m e. RR+ ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 272 |
255 271
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 273 |
|
fzfid |
|- ( ( ph /\ m e. RR+ ) -> ( 1 ... 2 ) e. Fin ) |
| 274 |
228
|
adantlr |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( X ` ( L ` k ) ) e. CC ) |
| 275 |
25
|
adantr |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> m e. RR+ ) |
| 276 |
233
|
adantl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> k e. NN ) |
| 277 |
276
|
nnrpd |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> k e. RR+ ) |
| 278 |
275 277
|
ifcld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> if ( S = 0 , m , k ) e. RR+ ) |
| 279 |
278
|
relogcld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( log ` if ( S = 0 , m , k ) ) e. RR ) |
| 280 |
279 276
|
nndivred |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) e. RR ) |
| 281 |
280
|
recnd |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) e. CC ) |
| 282 |
274 281
|
mulcld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 283 |
282
|
abscld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 284 |
273 283
|
fsumrecl |
|- ( ( ph /\ m e. RR+ ) -> sum_ k e. ( 1 ... 2 ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 285 |
255 284
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... 2 ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 286 |
|
fzfid |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( 1 ... 2 ) e. Fin ) |
| 287 |
255 282
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. CC ) |
| 288 |
287
|
abscld |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 289 |
287
|
absge0d |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> 0 <_ ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 290 |
246
|
flcld |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( |_ ` m ) e. ZZ ) |
| 291 |
|
2z |
|- 2 e. ZZ |
| 292 |
291
|
a1i |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 2 e. ZZ ) |
| 293 |
244
|
simp3bi |
|- ( m e. ( 1 [,) 3 ) -> m < 3 ) |
| 294 |
293
|
adantl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> m < 3 ) |
| 295 |
|
3z |
|- 3 e. ZZ |
| 296 |
|
fllt |
|- ( ( m e. RR /\ 3 e. ZZ ) -> ( m < 3 <-> ( |_ ` m ) < 3 ) ) |
| 297 |
246 295 296
|
sylancl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( m < 3 <-> ( |_ ` m ) < 3 ) ) |
| 298 |
294 297
|
mpbid |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( |_ ` m ) < 3 ) |
| 299 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
| 300 |
298 299
|
breqtrdi |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( |_ ` m ) < ( 2 + 1 ) ) |
| 301 |
|
rpre |
|- ( m e. RR+ -> m e. RR ) |
| 302 |
301
|
adantl |
|- ( ( ph /\ m e. RR+ ) -> m e. RR ) |
| 303 |
302
|
flcld |
|- ( ( ph /\ m e. RR+ ) -> ( |_ ` m ) e. ZZ ) |
| 304 |
|
zleltp1 |
|- ( ( ( |_ ` m ) e. ZZ /\ 2 e. ZZ ) -> ( ( |_ ` m ) <_ 2 <-> ( |_ ` m ) < ( 2 + 1 ) ) ) |
| 305 |
303 291 304
|
sylancl |
|- ( ( ph /\ m e. RR+ ) -> ( ( |_ ` m ) <_ 2 <-> ( |_ ` m ) < ( 2 + 1 ) ) ) |
| 306 |
255 305
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( ( |_ ` m ) <_ 2 <-> ( |_ ` m ) < ( 2 + 1 ) ) ) |
| 307 |
300 306
|
mpbird |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( |_ ` m ) <_ 2 ) |
| 308 |
|
eluz2 |
|- ( 2 e. ( ZZ>= ` ( |_ ` m ) ) <-> ( ( |_ ` m ) e. ZZ /\ 2 e. ZZ /\ ( |_ ` m ) <_ 2 ) ) |
| 309 |
290 292 307 308
|
syl3anbrc |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 2 e. ( ZZ>= ` ( |_ ` m ) ) ) |
| 310 |
|
fzss2 |
|- ( 2 e. ( ZZ>= ` ( |_ ` m ) ) -> ( 1 ... ( |_ ` m ) ) C_ ( 1 ... 2 ) ) |
| 311 |
309 310
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( 1 ... ( |_ ` m ) ) C_ ( 1 ... 2 ) ) |
| 312 |
286 288 289 311
|
fsumless |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 313 |
237
|
adantlr |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) e. RR ) |
| 314 |
274 281
|
absmuld |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) = ( ( abs ` ( X ` ( L ` k ) ) ) x. ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 315 |
255 314
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) = ( ( abs ` ( X ` ( L ` k ) ) ) x. ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) ) |
| 316 |
255 280
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) e. RR ) |
| 317 |
255 279
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( log ` if ( S = 0 , m , k ) ) e. RR ) |
| 318 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 319 |
|
elfzle1 |
|- ( k e. ( 1 ... 2 ) -> 1 <_ k ) |
| 320 |
|
breq2 |
|- ( m = if ( S = 0 , m , k ) -> ( 1 <_ m <-> 1 <_ if ( S = 0 , m , k ) ) ) |
| 321 |
|
breq2 |
|- ( k = if ( S = 0 , m , k ) -> ( 1 <_ k <-> 1 <_ if ( S = 0 , m , k ) ) ) |
| 322 |
320 321
|
ifboth |
|- ( ( 1 <_ m /\ 1 <_ k ) -> 1 <_ if ( S = 0 , m , k ) ) |
| 323 |
252 319 322
|
syl2an |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> 1 <_ if ( S = 0 , m , k ) ) |
| 324 |
|
1rp |
|- 1 e. RR+ |
| 325 |
|
logleb |
|- ( ( 1 e. RR+ /\ if ( S = 0 , m , k ) e. RR+ ) -> ( 1 <_ if ( S = 0 , m , k ) <-> ( log ` 1 ) <_ ( log ` if ( S = 0 , m , k ) ) ) ) |
| 326 |
324 278 325
|
sylancr |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( 1 <_ if ( S = 0 , m , k ) <-> ( log ` 1 ) <_ ( log ` if ( S = 0 , m , k ) ) ) ) |
| 327 |
255 326
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( 1 <_ if ( S = 0 , m , k ) <-> ( log ` 1 ) <_ ( log ` if ( S = 0 , m , k ) ) ) ) |
| 328 |
323 327
|
mpbid |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( log ` 1 ) <_ ( log ` if ( S = 0 , m , k ) ) ) |
| 329 |
318 328
|
eqbrtrrid |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> 0 <_ ( log ` if ( S = 0 , m , k ) ) ) |
| 330 |
277
|
rpregt0d |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( k e. RR /\ 0 < k ) ) |
| 331 |
255 330
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( k e. RR /\ 0 < k ) ) |
| 332 |
|
divge0 |
|- ( ( ( ( log ` if ( S = 0 , m , k ) ) e. RR /\ 0 <_ ( log ` if ( S = 0 , m , k ) ) ) /\ ( k e. RR /\ 0 < k ) ) -> 0 <_ ( ( log ` if ( S = 0 , m , k ) ) / k ) ) |
| 333 |
317 329 331 332
|
syl21anc |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> 0 <_ ( ( log ` if ( S = 0 , m , k ) ) / k ) ) |
| 334 |
316 333
|
absidd |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) = ( ( log ` if ( S = 0 , m , k ) ) / k ) ) |
| 335 |
334 316
|
eqeltrd |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. RR ) |
| 336 |
236
|
adantlr |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` 3 ) / k ) e. RR ) |
| 337 |
229
|
adantlr |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( X ` ( L ` k ) ) ) e. RR ) |
| 338 |
274
|
absge0d |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> 0 <_ ( abs ` ( X ` ( L ` k ) ) ) ) |
| 339 |
337 338
|
jca |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) e. RR /\ 0 <_ ( abs ` ( X ` ( L ` k ) ) ) ) ) |
| 340 |
255 339
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) e. RR /\ 0 <_ ( abs ` ( X ` ( L ` k ) ) ) ) ) |
| 341 |
293
|
ad2antlr |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> m < 3 ) |
| 342 |
276
|
nnred |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> k e. RR ) |
| 343 |
|
2re |
|- 2 e. RR |
| 344 |
343
|
a1i |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> 2 e. RR ) |
| 345 |
66
|
a1i |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> 3 e. RR ) |
| 346 |
|
elfzle2 |
|- ( k e. ( 1 ... 2 ) -> k <_ 2 ) |
| 347 |
346
|
adantl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> k <_ 2 ) |
| 348 |
|
2lt3 |
|- 2 < 3 |
| 349 |
348
|
a1i |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> 2 < 3 ) |
| 350 |
342 344 345 347 349
|
lelttrd |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> k < 3 ) |
| 351 |
255 350
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> k < 3 ) |
| 352 |
|
breq1 |
|- ( m = if ( S = 0 , m , k ) -> ( m < 3 <-> if ( S = 0 , m , k ) < 3 ) ) |
| 353 |
|
breq1 |
|- ( k = if ( S = 0 , m , k ) -> ( k < 3 <-> if ( S = 0 , m , k ) < 3 ) ) |
| 354 |
352 353
|
ifboth |
|- ( ( m < 3 /\ k < 3 ) -> if ( S = 0 , m , k ) < 3 ) |
| 355 |
341 351 354
|
syl2anc |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> if ( S = 0 , m , k ) < 3 ) |
| 356 |
278
|
rpred |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> if ( S = 0 , m , k ) e. RR ) |
| 357 |
|
ltle |
|- ( ( if ( S = 0 , m , k ) e. RR /\ 3 e. RR ) -> ( if ( S = 0 , m , k ) < 3 -> if ( S = 0 , m , k ) <_ 3 ) ) |
| 358 |
356 66 357
|
sylancl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( if ( S = 0 , m , k ) < 3 -> if ( S = 0 , m , k ) <_ 3 ) ) |
| 359 |
255 358
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( if ( S = 0 , m , k ) < 3 -> if ( S = 0 , m , k ) <_ 3 ) ) |
| 360 |
355 359
|
mpd |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> if ( S = 0 , m , k ) <_ 3 ) |
| 361 |
|
logleb |
|- ( ( if ( S = 0 , m , k ) e. RR+ /\ 3 e. RR+ ) -> ( if ( S = 0 , m , k ) <_ 3 <-> ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) ) ) |
| 362 |
278 230 361
|
sylancl |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( if ( S = 0 , m , k ) <_ 3 <-> ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) ) ) |
| 363 |
255 362
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( if ( S = 0 , m , k ) <_ 3 <-> ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) ) ) |
| 364 |
360 363
|
mpbid |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) ) |
| 365 |
232
|
a1i |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( log ` 3 ) e. RR ) |
| 366 |
279 365 277
|
lediv1d |
|- ( ( ( ph /\ m e. RR+ ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) <-> ( ( log ` if ( S = 0 , m , k ) ) / k ) <_ ( ( log ` 3 ) / k ) ) ) |
| 367 |
255 366
|
sylan |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) <_ ( log ` 3 ) <-> ( ( log ` if ( S = 0 , m , k ) ) / k ) <_ ( ( log ` 3 ) / k ) ) ) |
| 368 |
364 367
|
mpbid |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( log ` if ( S = 0 , m , k ) ) / k ) <_ ( ( log ` 3 ) / k ) ) |
| 369 |
334 368
|
eqbrtrd |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) <_ ( ( log ` 3 ) / k ) ) |
| 370 |
|
lemul2a |
|- ( ( ( ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) e. RR /\ ( ( log ` 3 ) / k ) e. RR /\ ( ( abs ` ( X ` ( L ` k ) ) ) e. RR /\ 0 <_ ( abs ` ( X ` ( L ` k ) ) ) ) ) /\ ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) <_ ( ( log ` 3 ) / k ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) x. ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 371 |
335 336 340 369 370
|
syl31anc |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( ( abs ` ( X ` ( L ` k ) ) ) x. ( abs ` ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 372 |
315 371
|
eqbrtrd |
|- ( ( ( ph /\ m e. ( 1 [,) 3 ) ) /\ k e. ( 1 ... 2 ) ) -> ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 373 |
286 288 313 372
|
fsumle |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... 2 ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 374 |
270 285 264 312 373
|
letrd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> sum_ k e. ( 1 ... ( |_ ` m ) ) ( abs ` ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 375 |
261 270 264 272 374
|
letrd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) ) |
| 376 |
34
|
abscld |
|- ( ( ph /\ m e. RR+ ) -> ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) e. RR ) |
| 377 |
238
|
adantr |
|- ( ( ph /\ m e. RR+ ) -> sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) e. RR ) |
| 378 |
256
|
abscld |
|- ( ( ph /\ m e. RR+ ) -> ( abs ` if ( S = 0 , 0 , T ) ) e. RR ) |
| 379 |
376 377 378
|
leadd1d |
|- ( ( ph /\ m e. RR+ ) -> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) <-> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) <_ ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) ) |
| 380 |
255 379
|
syl |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) <_ sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) <-> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) <_ ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) ) |
| 381 |
375 380
|
mpbid |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( ( abs ` sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) <_ ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) |
| 382 |
259 263 265 267 381
|
letrd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) |
| 383 |
382
|
ralrimiva |
|- ( ph -> A. m e. ( 1 [,) 3 ) ( abs ` ( sum_ k e. ( 1 ... ( |_ ` m ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , m , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) <_ ( sum_ k e. ( 1 ... 2 ) ( ( abs ` ( X ` ( L ` k ) ) ) x. ( ( log ` 3 ) / k ) ) + ( abs ` if ( S = 0 , 0 , T ) ) ) ) |
| 384 |
1 2 3 4 5 6 7 8 34 42 43 48 223 240 383
|
dchrvmasumlem3 |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( ( X ` ( L ` d ) ) x. ( ( mmu ` d ) / d ) ) x. ( sum_ k e. ( 1 ... ( |_ ` ( x / d ) ) ) ( ( X ` ( L ` k ) ) x. ( ( log ` if ( S = 0 , ( x / d ) , k ) ) / k ) ) - if ( S = 0 , 0 , T ) ) ) ) e. O(1) ) |