Metamath Proof Explorer


Theorem dchrvmasumiflem1

Description: Lemma for dchrvmasumif . (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasumif.f F = a X L a a
dchrvmasumif.c φ C 0 +∞
dchrvmasumif.s φ seq 1 + F S
dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
dchrvmasumif.g K = a X L a log a a
dchrvmasumif.e φ E 0 +∞
dchrvmasumif.t φ seq 1 + K T
dchrvmasumif.2 φ y 3 +∞ seq 1 + K y T E log y y
Assertion dchrvmasumiflem1 φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T 𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasumif.f F = a X L a a
10 dchrvmasumif.c φ C 0 +∞
11 dchrvmasumif.s φ seq 1 + F S
12 dchrvmasumif.1 φ y 1 +∞ seq 1 + F y S C y
13 dchrvmasumif.g K = a X L a log a a
14 dchrvmasumif.e φ E 0 +∞
15 dchrvmasumif.t φ seq 1 + K T
16 dchrvmasumif.2 φ y 3 +∞ seq 1 + K y T E log y y
17 fzfid φ m + 1 m Fin
18 simpl φ m + φ
19 elfznn k 1 m k
20 7 adantr φ k X D
21 nnz k k
22 21 adantl φ k k
23 4 1 5 2 20 22 dchrzrhcl φ k X L k
24 18 19 23 syl2an φ m + k 1 m X L k
25 simpr φ m + m +
26 19 nnrpd k 1 m k +
27 ifcl m + k + if S = 0 m k +
28 25 26 27 syl2an φ m + k 1 m if S = 0 m k +
29 28 relogcld φ m + k 1 m log if S = 0 m k
30 19 adantl φ m + k 1 m k
31 29 30 nndivred φ m + k 1 m log if S = 0 m k k
32 31 recnd φ m + k 1 m log if S = 0 m k k
33 24 32 mulcld φ m + k 1 m X L k log if S = 0 m k k
34 17 33 fsumcl φ m + k = 1 m X L k log if S = 0 m k k
35 fveq2 m = x d m = x d
36 35 oveq2d m = x d 1 m = 1 x d
37 ifeq1 m = x d if S = 0 m k = if S = 0 x d k
38 37 fveq2d m = x d log if S = 0 m k = log if S = 0 x d k
39 38 oveq1d m = x d log if S = 0 m k k = log if S = 0 x d k k
40 39 oveq2d m = x d X L k log if S = 0 m k k = X L k log if S = 0 x d k k
41 40 adantr m = x d k 1 x d X L k log if S = 0 m k k = X L k log if S = 0 x d k k
42 36 41 sumeq12rdv m = x d k = 1 m X L k log if S = 0 m k k = k = 1 x d X L k log if S = 0 x d k k
43 10 14 ifcld φ if S = 0 C E 0 +∞
44 0cn 0
45 climcl seq 1 + K T T
46 15 45 syl φ T
47 ifcl 0 T if S = 0 0 T
48 44 46 47 sylancr φ if S = 0 0 T
49 nnuz = 1
50 1zzd φ 1
51 nncn k k
52 51 adantl φ k k
53 nnne0 k k 0
54 53 adantl φ k k 0
55 23 52 54 divcld φ k X L k k
56 2fveq3 a = k X L a = X L k
57 id a = k a = k
58 56 57 oveq12d a = k X L a a = X L k k
59 58 cbvmptv a X L a a = k X L k k
60 9 59 eqtri F = k X L k k
61 55 60 fmptd φ F :
62 ffvelrn F : k F k
63 61 62 sylan φ k F k
64 49 50 63 serf φ seq 1 + F :
65 64 ad2antrr φ m 3 +∞ S = 0 seq 1 + F :
66 3re 3
67 elicopnf 3 m 3 +∞ m 3 m
68 66 67 mp1i φ m 3 +∞ m 3 m
69 68 simprbda φ m 3 +∞ m
70 1red φ m 3 +∞ 1
71 66 a1i φ m 3 +∞ 3
72 1le3 1 3
73 72 a1i φ m 3 +∞ 1 3
74 68 simplbda φ m 3 +∞ 3 m
75 70 71 69 73 74 letrd φ m 3 +∞ 1 m
76 flge1nn m 1 m m
77 69 75 76 syl2anc φ m 3 +∞ m
78 77 adantr φ m 3 +∞ S = 0 m
79 65 78 ffvelrnd φ m 3 +∞ S = 0 seq 1 + F m
80 79 abscld φ m 3 +∞ S = 0 seq 1 + F m
81 simpl φ m 3 +∞ φ
82 0red φ m 3 +∞ 0
83 3pos 0 < 3
84 83 a1i φ m 3 +∞ 0 < 3
85 82 71 69 84 74 ltletrd φ m 3 +∞ 0 < m
86 69 85 elrpd φ m 3 +∞ m +
87 81 86 jca φ m 3 +∞ φ m +
88 elrege0 C 0 +∞ C 0 C
89 88 simplbi C 0 +∞ C
90 10 89 syl φ C
91 rerpdivcl C m + C m
92 90 91 sylan φ m + C m
93 87 92 syl φ m 3 +∞ C m
94 93 adantr φ m 3 +∞ S = 0 C m
95 86 relogcld φ m 3 +∞ log m
96 69 75 logge0d φ m 3 +∞ 0 log m
97 95 96 jca φ m 3 +∞ log m 0 log m
98 97 adantr φ m 3 +∞ S = 0 log m 0 log m
99 oveq2 S = 0 seq 1 + F m S = seq 1 + F m 0
100 64 adantr φ m 3 +∞ seq 1 + F :
101 100 77 ffvelrnd φ m 3 +∞ seq 1 + F m
102 101 subid1d φ m 3 +∞ seq 1 + F m 0 = seq 1 + F m
103 99 102 sylan9eqr φ m 3 +∞ S = 0 seq 1 + F m S = seq 1 + F m
104 103 fveq2d φ m 3 +∞ S = 0 seq 1 + F m S = seq 1 + F m
105 2fveq3 y = m seq 1 + F y = seq 1 + F m
106 105 fvoveq1d y = m seq 1 + F y S = seq 1 + F m S
107 oveq2 y = m C y = C m
108 106 107 breq12d y = m seq 1 + F y S C y seq 1 + F m S C m
109 12 adantr φ m 3 +∞ y 1 +∞ seq 1 + F y S C y
110 1re 1
111 elicopnf 1 m 1 +∞ m 1 m
112 110 111 ax-mp m 1 +∞ m 1 m
113 69 75 112 sylanbrc φ m 3 +∞ m 1 +∞
114 108 109 113 rspcdva φ m 3 +∞ seq 1 + F m S C m
115 114 adantr φ m 3 +∞ S = 0 seq 1 + F m S C m
116 104 115 eqbrtrrd φ m 3 +∞ S = 0 seq 1 + F m C m
117 lemul2a seq 1 + F m C m log m 0 log m seq 1 + F m C m log m seq 1 + F m log m C m
118 80 94 98 116 117 syl31anc φ m 3 +∞ S = 0 log m seq 1 + F m log m C m
119 iftrue S = 0 if S = 0 m k = m
120 119 fveq2d S = 0 log if S = 0 m k = log m
121 120 oveq1d S = 0 log if S = 0 m k k = log m k
122 121 ad2antlr φ m + S = 0 k 1 m log if S = 0 m k k = log m k
123 122 oveq2d φ m + S = 0 k 1 m X L k log if S = 0 m k k = X L k log m k
124 24 adantlr φ m + S = 0 k 1 m X L k
125 relogcl m + log m
126 125 adantl φ m + log m
127 126 recnd φ m + log m
128 127 ad2antrr φ m + S = 0 k 1 m log m
129 19 adantl φ m + S = 0 k 1 m k
130 129 nncnd φ m + S = 0 k 1 m k
131 129 nnne0d φ m + S = 0 k 1 m k 0
132 124 128 130 131 div12d φ m + S = 0 k 1 m X L k log m k = log m X L k k
133 123 132 eqtrd φ m + S = 0 k 1 m X L k log if S = 0 m k k = log m X L k k
134 133 sumeq2dv φ m + S = 0 k = 1 m X L k log if S = 0 m k k = k = 1 m log m X L k k
135 iftrue S = 0 if S = 0 0 T = 0
136 135 oveq2d S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = k = 1 m X L k log if S = 0 m k k 0
137 34 subid1d φ m + k = 1 m X L k log if S = 0 m k k 0 = k = 1 m X L k log if S = 0 m k k
138 136 137 sylan9eqr φ m + S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = k = 1 m X L k log if S = 0 m k k
139 ovex X L k k V
140 58 9 139 fvmpt k F k = X L k k
141 30 140 syl φ m + k 1 m F k = X L k k
142 61 adantr φ m + F :
143 142 19 62 syl2an φ m + k 1 m F k
144 141 143 eqeltrrd φ m + k 1 m X L k k
145 17 127 144 fsummulc2 φ m + log m k = 1 m X L k k = k = 1 m log m X L k k
146 145 adantr φ m + S = 0 log m k = 1 m X L k k = k = 1 m log m X L k k
147 134 138 146 3eqtr4d φ m + S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = log m k = 1 m X L k k
148 87 147 sylan φ m 3 +∞ S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = log m k = 1 m X L k k
149 87 141 sylan φ m 3 +∞ k 1 m F k = X L k k
150 77 49 eleqtrdi φ m 3 +∞ m 1
151 81 19 55 syl2an φ m 3 +∞ k 1 m X L k k
152 149 150 151 fsumser φ m 3 +∞ k = 1 m X L k k = seq 1 + F m
153 152 adantr φ m 3 +∞ S = 0 k = 1 m X L k k = seq 1 + F m
154 153 oveq2d φ m 3 +∞ S = 0 log m k = 1 m X L k k = log m seq 1 + F m
155 148 154 eqtrd φ m 3 +∞ S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = log m seq 1 + F m
156 155 fveq2d φ m 3 +∞ S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = log m seq 1 + F m
157 125 ad2antlr φ m + S = 0 log m
158 157 recnd φ m + S = 0 log m
159 87 158 sylan φ m 3 +∞ S = 0 log m
160 159 79 absmuld φ m 3 +∞ S = 0 log m seq 1 + F m = log m seq 1 + F m
161 95 96 absidd φ m 3 +∞ log m = log m
162 161 oveq1d φ m 3 +∞ log m seq 1 + F m = log m seq 1 + F m
163 162 adantr φ m 3 +∞ S = 0 log m seq 1 + F m = log m seq 1 + F m
164 156 160 163 3eqtrd φ m 3 +∞ S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = log m seq 1 + F m
165 iftrue S = 0 if S = 0 C E = C
166 165 adantl φ m + S = 0 if S = 0 C E = C
167 166 oveq1d φ m + S = 0 if S = 0 C E log m m = C log m m
168 90 recnd φ C
169 168 ad2antrr φ m + S = 0 C
170 rpcnne0 m + m m 0
171 170 ad2antlr φ m + S = 0 m m 0
172 div12 C log m m m 0 C log m m = log m C m
173 169 158 171 172 syl3anc φ m + S = 0 C log m m = log m C m
174 167 173 eqtrd φ m + S = 0 if S = 0 C E log m m = log m C m
175 87 174 sylan φ m 3 +∞ S = 0 if S = 0 C E log m m = log m C m
176 118 164 175 3brtr4d φ m 3 +∞ S = 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T if S = 0 C E log m m
177 2fveq3 y = m seq 1 + K y = seq 1 + K m
178 177 fvoveq1d y = m seq 1 + K y T = seq 1 + K m T
179 fveq2 y = m log y = log m
180 id y = m y = m
181 179 180 oveq12d y = m log y y = log m m
182 181 oveq2d y = m E log y y = E log m m
183 178 182 breq12d y = m seq 1 + K y T E log y y seq 1 + K m T E log m m
184 183 rspccva y 3 +∞ seq 1 + K y T E log y y m 3 +∞ seq 1 + K m T E log m m
185 16 184 sylan φ m 3 +∞ seq 1 + K m T E log m m
186 185 adantr φ m 3 +∞ S 0 seq 1 + K m T E log m m
187 fveq2 a = k log a = log k
188 187 57 oveq12d a = k log a a = log k k
189 56 188 oveq12d a = k X L a log a a = X L k log k k
190 ovex X L k log k k V
191 189 13 190 fvmpt k K k = X L k log k k
192 19 191 syl k 1 m K k = X L k log k k
193 ifnefalse S 0 if S = 0 m k = k
194 193 fveq2d S 0 log if S = 0 m k = log k
195 194 oveq1d S 0 log if S = 0 m k k = log k k
196 195 oveq2d S 0 X L k log if S = 0 m k k = X L k log k k
197 196 adantl φ m 3 +∞ S 0 X L k log if S = 0 m k k = X L k log k k
198 197 eqcomd φ m 3 +∞ S 0 X L k log k k = X L k log if S = 0 m k k
199 192 198 sylan9eqr φ m 3 +∞ S 0 k 1 m K k = X L k log if S = 0 m k k
200 150 adantr φ m 3 +∞ S 0 m 1
201 nnrp k k +
202 201 adantl φ k k +
203 202 relogcld φ k log k
204 203 recnd φ k log k
205 204 52 54 divcld φ k log k k
206 23 205 mulcld φ k X L k log k k
207 189 cbvmptv a X L a log a a = k X L k log k k
208 13 207 eqtri K = k X L k log k k
209 206 208 fmptd φ K :
210 209 ad2antrr φ m 3 +∞ S 0 K :
211 ffvelrn K : k K k
212 210 19 211 syl2an φ m 3 +∞ S 0 k 1 m K k
213 199 212 eqeltrrd φ m 3 +∞ S 0 k 1 m X L k log if S = 0 m k k
214 199 200 213 fsumser φ m 3 +∞ S 0 k = 1 m X L k log if S = 0 m k k = seq 1 + K m
215 ifnefalse S 0 if S = 0 0 T = T
216 215 adantl φ m 3 +∞ S 0 if S = 0 0 T = T
217 214 216 oveq12d φ m 3 +∞ S 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = seq 1 + K m T
218 217 fveq2d φ m 3 +∞ S 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T = seq 1 + K m T
219 ifnefalse S 0 if S = 0 C E = E
220 219 adantl φ m 3 +∞ S 0 if S = 0 C E = E
221 220 oveq1d φ m 3 +∞ S 0 if S = 0 C E log m m = E log m m
222 186 218 221 3brtr4d φ m 3 +∞ S 0 k = 1 m X L k log if S = 0 m k k if S = 0 0 T if S = 0 C E log m m
223 176 222 pm2.61dane φ m 3 +∞ k = 1 m X L k log if S = 0 m k k if S = 0 0 T if S = 0 C E log m m
224 fzfid φ 1 2 Fin
225 7 adantr φ k 1 2 X D
226 elfzelz k 1 2 k
227 226 adantl φ k 1 2 k
228 4 1 5 2 225 227 dchrzrhcl φ k 1 2 X L k
229 228 abscld φ k 1 2 X L k
230 3rp 3 +
231 relogcl 3 + log 3
232 230 231 ax-mp log 3
233 elfznn k 1 2 k
234 233 adantl φ k 1 2 k
235 nndivre log 3 k log 3 k
236 232 234 235 sylancr φ k 1 2 log 3 k
237 229 236 remulcld φ k 1 2 X L k log 3 k
238 224 237 fsumrecl φ k = 1 2 X L k log 3 k
239 48 abscld φ if S = 0 0 T
240 238 239 readdcld φ k = 1 2 X L k log 3 k + if S = 0 0 T
241 simpl φ m 1 3 φ
242 66 rexri 3 *
243 elico2 1 3 * m 1 3 m 1 m m < 3
244 110 242 243 mp2an m 1 3 m 1 m m < 3
245 244 simp1bi m 1 3 m
246 245 adantl φ m 1 3 m
247 0red φ m 1 3 0
248 1red φ m 1 3 1
249 0lt1 0 < 1
250 249 a1i φ m 1 3 0 < 1
251 244 simp2bi m 1 3 1 m
252 251 adantl φ m 1 3 1 m
253 247 248 246 250 252 ltletrd φ m 1 3 0 < m
254 246 253 elrpd φ m 1 3 m +
255 241 254 jca φ m 1 3 φ m +
256 48 adantr φ m + if S = 0 0 T
257 34 256 subcld φ m + k = 1 m X L k log if S = 0 m k k if S = 0 0 T
258 255 257 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k if S = 0 0 T
259 258 abscld φ m 1 3 k = 1 m X L k log if S = 0 m k k if S = 0 0 T
260 255 34 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k
261 260 abscld φ m 1 3 k = 1 m X L k log if S = 0 m k k
262 239 adantr φ m 1 3 if S = 0 0 T
263 261 262 readdcld φ m 1 3 k = 1 m X L k log if S = 0 m k k + if S = 0 0 T
264 238 adantr φ m 1 3 k = 1 2 X L k log 3 k
265 264 262 readdcld φ m 1 3 k = 1 2 X L k log 3 k + if S = 0 0 T
266 34 256 abs2dif2d φ m + k = 1 m X L k log if S = 0 m k k if S = 0 0 T k = 1 m X L k log if S = 0 m k k + if S = 0 0 T
267 255 266 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k if S = 0 0 T k = 1 m X L k log if S = 0 m k k + if S = 0 0 T
268 33 abscld φ m + k 1 m X L k log if S = 0 m k k
269 17 268 fsumrecl φ m + k = 1 m X L k log if S = 0 m k k
270 255 269 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k
271 17 33 fsumabs φ m + k = 1 m X L k log if S = 0 m k k k = 1 m X L k log if S = 0 m k k
272 255 271 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k k = 1 m X L k log if S = 0 m k k
273 fzfid φ m + 1 2 Fin
274 228 adantlr φ m + k 1 2 X L k
275 25 adantr φ m + k 1 2 m +
276 233 adantl φ m + k 1 2 k
277 276 nnrpd φ m + k 1 2 k +
278 275 277 ifcld φ m + k 1 2 if S = 0 m k +
279 278 relogcld φ m + k 1 2 log if S = 0 m k
280 279 276 nndivred φ m + k 1 2 log if S = 0 m k k
281 280 recnd φ m + k 1 2 log if S = 0 m k k
282 274 281 mulcld φ m + k 1 2 X L k log if S = 0 m k k
283 282 abscld φ m + k 1 2 X L k log if S = 0 m k k
284 273 283 fsumrecl φ m + k = 1 2 X L k log if S = 0 m k k
285 255 284 syl φ m 1 3 k = 1 2 X L k log if S = 0 m k k
286 fzfid φ m 1 3 1 2 Fin
287 255 282 sylan φ m 1 3 k 1 2 X L k log if S = 0 m k k
288 287 abscld φ m 1 3 k 1 2 X L k log if S = 0 m k k
289 287 absge0d φ m 1 3 k 1 2 0 X L k log if S = 0 m k k
290 246 flcld φ m 1 3 m
291 2z 2
292 291 a1i φ m 1 3 2
293 244 simp3bi m 1 3 m < 3
294 293 adantl φ m 1 3 m < 3
295 3z 3
296 fllt m 3 m < 3 m < 3
297 246 295 296 sylancl φ m 1 3 m < 3 m < 3
298 294 297 mpbid φ m 1 3 m < 3
299 df-3 3 = 2 + 1
300 298 299 breqtrdi φ m 1 3 m < 2 + 1
301 rpre m + m
302 301 adantl φ m + m
303 302 flcld φ m + m
304 zleltp1 m 2 m 2 m < 2 + 1
305 303 291 304 sylancl φ m + m 2 m < 2 + 1
306 255 305 syl φ m 1 3 m 2 m < 2 + 1
307 300 306 mpbird φ m 1 3 m 2
308 eluz2 2 m m 2 m 2
309 290 292 307 308 syl3anbrc φ m 1 3 2 m
310 fzss2 2 m 1 m 1 2
311 309 310 syl φ m 1 3 1 m 1 2
312 286 288 289 311 fsumless φ m 1 3 k = 1 m X L k log if S = 0 m k k k = 1 2 X L k log if S = 0 m k k
313 237 adantlr φ m 1 3 k 1 2 X L k log 3 k
314 274 281 absmuld φ m + k 1 2 X L k log if S = 0 m k k = X L k log if S = 0 m k k
315 255 314 sylan φ m 1 3 k 1 2 X L k log if S = 0 m k k = X L k log if S = 0 m k k
316 255 280 sylan φ m 1 3 k 1 2 log if S = 0 m k k
317 255 279 sylan φ m 1 3 k 1 2 log if S = 0 m k
318 log1 log 1 = 0
319 elfzle1 k 1 2 1 k
320 breq2 m = if S = 0 m k 1 m 1 if S = 0 m k
321 breq2 k = if S = 0 m k 1 k 1 if S = 0 m k
322 320 321 ifboth 1 m 1 k 1 if S = 0 m k
323 252 319 322 syl2an φ m 1 3 k 1 2 1 if S = 0 m k
324 1rp 1 +
325 logleb 1 + if S = 0 m k + 1 if S = 0 m k log 1 log if S = 0 m k
326 324 278 325 sylancr φ m + k 1 2 1 if S = 0 m k log 1 log if S = 0 m k
327 255 326 sylan φ m 1 3 k 1 2 1 if S = 0 m k log 1 log if S = 0 m k
328 323 327 mpbid φ m 1 3 k 1 2 log 1 log if S = 0 m k
329 318 328 eqbrtrrid φ m 1 3 k 1 2 0 log if S = 0 m k
330 277 rpregt0d φ m + k 1 2 k 0 < k
331 255 330 sylan φ m 1 3 k 1 2 k 0 < k
332 divge0 log if S = 0 m k 0 log if S = 0 m k k 0 < k 0 log if S = 0 m k k
333 317 329 331 332 syl21anc φ m 1 3 k 1 2 0 log if S = 0 m k k
334 316 333 absidd φ m 1 3 k 1 2 log if S = 0 m k k = log if S = 0 m k k
335 334 316 eqeltrd φ m 1 3 k 1 2 log if S = 0 m k k
336 236 adantlr φ m 1 3 k 1 2 log 3 k
337 229 adantlr φ m + k 1 2 X L k
338 274 absge0d φ m + k 1 2 0 X L k
339 337 338 jca φ m + k 1 2 X L k 0 X L k
340 255 339 sylan φ m 1 3 k 1 2 X L k 0 X L k
341 293 ad2antlr φ m 1 3 k 1 2 m < 3
342 276 nnred φ m + k 1 2 k
343 2re 2
344 343 a1i φ m + k 1 2 2
345 66 a1i φ m + k 1 2 3
346 elfzle2 k 1 2 k 2
347 346 adantl φ m + k 1 2 k 2
348 2lt3 2 < 3
349 348 a1i φ m + k 1 2 2 < 3
350 342 344 345 347 349 lelttrd φ m + k 1 2 k < 3
351 255 350 sylan φ m 1 3 k 1 2 k < 3
352 breq1 m = if S = 0 m k m < 3 if S = 0 m k < 3
353 breq1 k = if S = 0 m k k < 3 if S = 0 m k < 3
354 352 353 ifboth m < 3 k < 3 if S = 0 m k < 3
355 341 351 354 syl2anc φ m 1 3 k 1 2 if S = 0 m k < 3
356 278 rpred φ m + k 1 2 if S = 0 m k
357 ltle if S = 0 m k 3 if S = 0 m k < 3 if S = 0 m k 3
358 356 66 357 sylancl φ m + k 1 2 if S = 0 m k < 3 if S = 0 m k 3
359 255 358 sylan φ m 1 3 k 1 2 if S = 0 m k < 3 if S = 0 m k 3
360 355 359 mpd φ m 1 3 k 1 2 if S = 0 m k 3
361 logleb if S = 0 m k + 3 + if S = 0 m k 3 log if S = 0 m k log 3
362 278 230 361 sylancl φ m + k 1 2 if S = 0 m k 3 log if S = 0 m k log 3
363 255 362 sylan φ m 1 3 k 1 2 if S = 0 m k 3 log if S = 0 m k log 3
364 360 363 mpbid φ m 1 3 k 1 2 log if S = 0 m k log 3
365 232 a1i φ m + k 1 2 log 3
366 279 365 277 lediv1d φ m + k 1 2 log if S = 0 m k log 3 log if S = 0 m k k log 3 k
367 255 366 sylan φ m 1 3 k 1 2 log if S = 0 m k log 3 log if S = 0 m k k log 3 k
368 364 367 mpbid φ m 1 3 k 1 2 log if S = 0 m k k log 3 k
369 334 368 eqbrtrd φ m 1 3 k 1 2 log if S = 0 m k k log 3 k
370 lemul2a log if S = 0 m k k log 3 k X L k 0 X L k log if S = 0 m k k log 3 k X L k log if S = 0 m k k X L k log 3 k
371 335 336 340 369 370 syl31anc φ m 1 3 k 1 2 X L k log if S = 0 m k k X L k log 3 k
372 315 371 eqbrtrd φ m 1 3 k 1 2 X L k log if S = 0 m k k X L k log 3 k
373 286 288 313 372 fsumle φ m 1 3 k = 1 2 X L k log if S = 0 m k k k = 1 2 X L k log 3 k
374 270 285 264 312 373 letrd φ m 1 3 k = 1 m X L k log if S = 0 m k k k = 1 2 X L k log 3 k
375 261 270 264 272 374 letrd φ m 1 3 k = 1 m X L k log if S = 0 m k k k = 1 2 X L k log 3 k
376 34 abscld φ m + k = 1 m X L k log if S = 0 m k k
377 238 adantr φ m + k = 1 2 X L k log 3 k
378 256 abscld φ m + if S = 0 0 T
379 376 377 378 leadd1d φ m + k = 1 m X L k log if S = 0 m k k k = 1 2 X L k log 3 k k = 1 m X L k log if S = 0 m k k + if S = 0 0 T k = 1 2 X L k log 3 k + if S = 0 0 T
380 255 379 syl φ m 1 3 k = 1 m X L k log if S = 0 m k k k = 1 2 X L k log 3 k k = 1 m X L k log if S = 0 m k k + if S = 0 0 T k = 1 2 X L k log 3 k + if S = 0 0 T
381 375 380 mpbid φ m 1 3 k = 1 m X L k log if S = 0 m k k + if S = 0 0 T k = 1 2 X L k log 3 k + if S = 0 0 T
382 259 263 265 267 381 letrd φ m 1 3 k = 1 m X L k log if S = 0 m k k if S = 0 0 T k = 1 2 X L k log 3 k + if S = 0 0 T
383 382 ralrimiva φ m 1 3 k = 1 m X L k log if S = 0 m k k if S = 0 0 T k = 1 2 X L k log 3 k + if S = 0 0 T
384 1 2 3 4 5 6 7 8 34 42 43 48 223 240 383 dchrvmasumlem3 φ x + d = 1 x X L d μ d d k = 1 x d X L k log if S = 0 x d k k if S = 0 0 T 𝑂1