| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|
| 2 |
|
rpvmasum.l |
|
| 3 |
|
rpvmasum.a |
|
| 4 |
|
rpvmasum.g |
|
| 5 |
|
rpvmasum.d |
|
| 6 |
|
rpvmasum.1 |
|
| 7 |
|
dchrisum.b |
|
| 8 |
|
dchrisum.n1 |
|
| 9 |
|
dchrvmasum.f |
|
| 10 |
|
dchrvmasum.g |
|
| 11 |
|
dchrvmasum.c |
|
| 12 |
|
dchrvmasum.t |
|
| 13 |
|
dchrvmasum.1 |
|
| 14 |
|
dchrvmasum.r |
|
| 15 |
|
dchrvmasum.2 |
|
| 16 |
|
1red |
|
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
dchrvmasumlem2 |
|
| 18 |
|
fzfid |
|
| 19 |
10
|
eleq1d |
|
| 20 |
9
|
ralrimiva |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
simpr |
|
| 23 |
|
elfznn |
|
| 24 |
23
|
nnrpd |
|
| 25 |
|
rpdivcl |
|
| 26 |
22 24 25
|
syl2an |
|
| 27 |
19 21 26
|
rspcdva |
|
| 28 |
12
|
ad2antrr |
|
| 29 |
27 28
|
subcld |
|
| 30 |
29
|
abscld |
|
| 31 |
23
|
adantl |
|
| 32 |
30 31
|
nndivred |
|
| 33 |
18 32
|
fsumrecl |
|
| 34 |
7
|
ad2antrr |
|
| 35 |
|
elfzelz |
|
| 36 |
35
|
adantl |
|
| 37 |
4 1 5 2 34 36
|
dchrzrhcl |
|
| 38 |
|
mucl |
|
| 39 |
31 38
|
syl |
|
| 40 |
39
|
zred |
|
| 41 |
40 31
|
nndivred |
|
| 42 |
41
|
recnd |
|
| 43 |
37 42
|
mulcld |
|
| 44 |
43 29
|
mulcld |
|
| 45 |
18 44
|
fsumcl |
|
| 46 |
45
|
abscld |
|
| 47 |
33
|
recnd |
|
| 48 |
47
|
abscld |
|
| 49 |
44
|
abscld |
|
| 50 |
18 49
|
fsumrecl |
|
| 51 |
18 44
|
fsumabs |
|
| 52 |
43
|
abscld |
|
| 53 |
31
|
nnrecred |
|
| 54 |
29
|
absge0d |
|
| 55 |
37 42
|
absmuld |
|
| 56 |
37
|
abscld |
|
| 57 |
|
1red |
|
| 58 |
42
|
abscld |
|
| 59 |
37
|
absge0d |
|
| 60 |
42
|
absge0d |
|
| 61 |
|
eqid |
|
| 62 |
3
|
nnnn0d |
|
| 63 |
1 61 2
|
znzrhfo |
|
| 64 |
62 63
|
syl |
|
| 65 |
|
fof |
|
| 66 |
64 65
|
syl |
|
| 67 |
66
|
ad2antrr |
|
| 68 |
67 36
|
ffvelcdmd |
|
| 69 |
4 5 1 61 34 68
|
dchrabs2 |
|
| 70 |
40
|
recnd |
|
| 71 |
31
|
nncnd |
|
| 72 |
31
|
nnne0d |
|
| 73 |
70 71 72
|
absdivd |
|
| 74 |
31
|
nnrpd |
|
| 75 |
74
|
rprege0d |
|
| 76 |
|
absid |
|
| 77 |
75 76
|
syl |
|
| 78 |
77
|
oveq2d |
|
| 79 |
73 78
|
eqtrd |
|
| 80 |
70
|
abscld |
|
| 81 |
|
mule1 |
|
| 82 |
31 81
|
syl |
|
| 83 |
80 57 74 82
|
lediv1dd |
|
| 84 |
79 83
|
eqbrtrd |
|
| 85 |
56 57 58 53 59 60 69 84
|
lemul12ad |
|
| 86 |
53
|
recnd |
|
| 87 |
86
|
mullidd |
|
| 88 |
85 87
|
breqtrd |
|
| 89 |
55 88
|
eqbrtrd |
|
| 90 |
52 53 30 54 89
|
lemul1ad |
|
| 91 |
43 29
|
absmuld |
|
| 92 |
30
|
recnd |
|
| 93 |
92 71 72
|
divrec2d |
|
| 94 |
90 91 93
|
3brtr4d |
|
| 95 |
18 49 32 94
|
fsumle |
|
| 96 |
46 50 33 51 95
|
letrd |
|
| 97 |
33
|
leabsd |
|
| 98 |
46 33 48 96 97
|
letrd |
|
| 99 |
98
|
adantrr |
|
| 100 |
16 17 33 45 99
|
o1le |
|