Metamath Proof Explorer


Theorem dchrvmasumlem3

Description: Lemma for dchrvmasum . (Contributed by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z=/N
rpvmasum.l L=ℤRHomZ
rpvmasum.a φN
rpvmasum.g G=DChrN
rpvmasum.d D=BaseG
rpvmasum.1 1˙=0G
dchrisum.b φXD
dchrisum.n1 φX1˙
dchrvmasum.f φm+F
dchrvmasum.g m=xdF=K
dchrvmasum.c φC0+∞
dchrvmasum.t φT
dchrvmasum.1 φm3+∞FTClogmm
dchrvmasum.r φR
dchrvmasum.2 φm13FTR
Assertion dchrvmasumlem3 φx+d=1xXLdμddKT𝑂1

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z=/N
2 rpvmasum.l L=ℤRHomZ
3 rpvmasum.a φN
4 rpvmasum.g G=DChrN
5 rpvmasum.d D=BaseG
6 rpvmasum.1 1˙=0G
7 dchrisum.b φXD
8 dchrisum.n1 φX1˙
9 dchrvmasum.f φm+F
10 dchrvmasum.g m=xdF=K
11 dchrvmasum.c φC0+∞
12 dchrvmasum.t φT
13 dchrvmasum.1 φm3+∞FTClogmm
14 dchrvmasum.r φR
15 dchrvmasum.2 φm13FTR
16 1red φ1
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 dchrvmasumlem2 φx+d=1xKTd𝑂1
18 fzfid φx+1xFin
19 10 eleq1d m=xdFK
20 9 ralrimiva φm+F
21 20 ad2antrr φx+d1xm+F
22 simpr φx+x+
23 elfznn d1xd
24 23 nnrpd d1xd+
25 rpdivcl x+d+xd+
26 22 24 25 syl2an φx+d1xxd+
27 19 21 26 rspcdva φx+d1xK
28 12 ad2antrr φx+d1xT
29 27 28 subcld φx+d1xKT
30 29 abscld φx+d1xKT
31 23 adantl φx+d1xd
32 30 31 nndivred φx+d1xKTd
33 18 32 fsumrecl φx+d=1xKTd
34 7 ad2antrr φx+d1xXD
35 elfzelz d1xd
36 35 adantl φx+d1xd
37 4 1 5 2 34 36 dchrzrhcl φx+d1xXLd
38 mucl dμd
39 31 38 syl φx+d1xμd
40 39 zred φx+d1xμd
41 40 31 nndivred φx+d1xμdd
42 41 recnd φx+d1xμdd
43 37 42 mulcld φx+d1xXLdμdd
44 43 29 mulcld φx+d1xXLdμddKT
45 18 44 fsumcl φx+d=1xXLdμddKT
46 45 abscld φx+d=1xXLdμddKT
47 33 recnd φx+d=1xKTd
48 47 abscld φx+d=1xKTd
49 44 abscld φx+d1xXLdμddKT
50 18 49 fsumrecl φx+d=1xXLdμddKT
51 18 44 fsumabs φx+d=1xXLdμddKTd=1xXLdμddKT
52 43 abscld φx+d1xXLdμdd
53 31 nnrecred φx+d1x1d
54 29 absge0d φx+d1x0KT
55 37 42 absmuld φx+d1xXLdμdd=XLdμdd
56 37 abscld φx+d1xXLd
57 1red φx+d1x1
58 42 abscld φx+d1xμdd
59 37 absge0d φx+d1x0XLd
60 42 absge0d φx+d1x0μdd
61 eqid BaseZ=BaseZ
62 3 nnnn0d φN0
63 1 61 2 znzrhfo N0L:ontoBaseZ
64 62 63 syl φL:ontoBaseZ
65 fof L:ontoBaseZL:BaseZ
66 64 65 syl φL:BaseZ
67 66 ad2antrr φx+d1xL:BaseZ
68 67 36 ffvelcdmd φx+d1xLdBaseZ
69 4 5 1 61 34 68 dchrabs2 φx+d1xXLd1
70 40 recnd φx+d1xμd
71 31 nncnd φx+d1xd
72 31 nnne0d φx+d1xd0
73 70 71 72 absdivd φx+d1xμdd=μdd
74 31 nnrpd φx+d1xd+
75 74 rprege0d φx+d1xd0d
76 absid d0dd=d
77 75 76 syl φx+d1xd=d
78 77 oveq2d φx+d1xμdd=μdd
79 73 78 eqtrd φx+d1xμdd=μdd
80 70 abscld φx+d1xμd
81 mule1 dμd1
82 31 81 syl φx+d1xμd1
83 80 57 74 82 lediv1dd φx+d1xμdd1d
84 79 83 eqbrtrd φx+d1xμdd1d
85 56 57 58 53 59 60 69 84 lemul12ad φx+d1xXLdμdd11d
86 53 recnd φx+d1x1d
87 86 mullidd φx+d1x11d=1d
88 85 87 breqtrd φx+d1xXLdμdd1d
89 55 88 eqbrtrd φx+d1xXLdμdd1d
90 52 53 30 54 89 lemul1ad φx+d1xXLdμddKT1dKT
91 43 29 absmuld φx+d1xXLdμddKT=XLdμddKT
92 30 recnd φx+d1xKT
93 92 71 72 divrec2d φx+d1xKTd=1dKT
94 90 91 93 3brtr4d φx+d1xXLdμddKTKTd
95 18 49 32 94 fsumle φx+d=1xXLdμddKTd=1xKTd
96 46 50 33 51 95 letrd φx+d=1xXLdμddKTd=1xKTd
97 33 leabsd φx+d=1xKTdd=1xKTd
98 46 33 48 96 97 letrd φx+d=1xXLdμddKTd=1xKTd
99 98 adantrr φx+1xd=1xXLdμddKTd=1xKTd
100 16 17 33 45 99 o1le φx+d=1xXLdμddKT𝑂1