| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrvmasum.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝐹 ∈ ℂ ) |
| 10 |
|
dchrvmasum.g |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → 𝐹 = 𝐾 ) |
| 11 |
|
dchrvmasum.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 12 |
|
dchrvmasum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 13 |
|
dchrvmasum.1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 14 |
|
dchrvmasum.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 15 |
|
dchrvmasum.2 |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 1 [,) 3 ) ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ 𝑅 ) |
| 16 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
dchrvmasumlem2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ∈ 𝑂(1) ) |
| 18 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 19 |
10
|
eleq1d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( 𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ ) ) |
| 20 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℝ+ 𝐹 ∈ ℂ ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑚 ∈ ℝ+ 𝐹 ∈ ℂ ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 23 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
| 24 |
23
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℝ+ ) |
| 25 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 26 |
22 24 25
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 27 |
19 21 26
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐾 ∈ ℂ ) |
| 28 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑇 ∈ ℂ ) |
| 29 |
27 28
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐾 − 𝑇 ) ∈ ℂ ) |
| 30 |
29
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ∈ ℝ ) |
| 31 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
| 32 |
30 31
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℝ ) |
| 33 |
18 32
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℝ ) |
| 34 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑋 ∈ 𝐷 ) |
| 35 |
|
elfzelz |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℤ ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℤ ) |
| 37 |
4 1 5 2 34 36
|
dchrzrhcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ∈ ℂ ) |
| 38 |
|
mucl |
⊢ ( 𝑑 ∈ ℕ → ( μ ‘ 𝑑 ) ∈ ℤ ) |
| 39 |
31 38
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℤ ) |
| 40 |
39
|
zred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℝ ) |
| 41 |
40 31
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℝ ) |
| 42 |
41
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( μ ‘ 𝑑 ) / 𝑑 ) ∈ ℂ ) |
| 43 |
37 42
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℂ ) |
| 44 |
43 29
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ∈ ℂ ) |
| 45 |
18 44
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ∈ ℂ ) |
| 46 |
45
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ∈ ℝ ) |
| 47 |
33
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℂ ) |
| 48 |
47
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ∈ ℝ ) |
| 49 |
44
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ∈ ℝ ) |
| 50 |
18 49
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ∈ ℝ ) |
| 51 |
18 44
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ) |
| 52 |
43
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ∈ ℝ ) |
| 53 |
31
|
nnrecred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑑 ) ∈ ℝ ) |
| 54 |
29
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 55 |
37 42
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) · ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ) |
| 56 |
37
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ∈ ℝ ) |
| 57 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 58 |
42
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ∈ ℝ ) |
| 59 |
37
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ) |
| 60 |
42
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) |
| 61 |
|
eqid |
⊢ ( Base ‘ 𝑍 ) = ( Base ‘ 𝑍 ) |
| 62 |
3
|
nnnn0d |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 63 |
1 61 2
|
znzrhfo |
⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
| 64 |
62 63
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) ) |
| 65 |
|
fof |
⊢ ( 𝐿 : ℤ –onto→ ( Base ‘ 𝑍 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 67 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑍 ) ) |
| 68 |
67 36
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐿 ‘ 𝑑 ) ∈ ( Base ‘ 𝑍 ) ) |
| 69 |
4 5 1 61 34 68
|
dchrabs2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) ≤ 1 ) |
| 70 |
40
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( μ ‘ 𝑑 ) ∈ ℂ ) |
| 71 |
31
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℂ ) |
| 72 |
31
|
nnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ≠ 0 ) |
| 73 |
70 71 72
|
absdivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / ( abs ‘ 𝑑 ) ) ) |
| 74 |
31
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ+ ) |
| 75 |
74
|
rprege0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) ) |
| 76 |
|
absid |
⊢ ( ( 𝑑 ∈ ℝ ∧ 0 ≤ 𝑑 ) → ( abs ‘ 𝑑 ) = 𝑑 ) |
| 77 |
75 76
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ 𝑑 ) = 𝑑 ) |
| 78 |
77
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑑 ) ) / ( abs ‘ 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ) |
| 79 |
73 78
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) = ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ) |
| 80 |
70
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑑 ) ) ∈ ℝ ) |
| 81 |
|
mule1 |
⊢ ( 𝑑 ∈ ℕ → ( abs ‘ ( μ ‘ 𝑑 ) ) ≤ 1 ) |
| 82 |
31 81
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( μ ‘ 𝑑 ) ) ≤ 1 ) |
| 83 |
80 57 74 82
|
lediv1dd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( μ ‘ 𝑑 ) ) / 𝑑 ) ≤ ( 1 / 𝑑 ) ) |
| 84 |
79 83
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ≤ ( 1 / 𝑑 ) ) |
| 85 |
56 57 58 53 59 60 69 84
|
lemul12ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) · ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ≤ ( 1 · ( 1 / 𝑑 ) ) ) |
| 86 |
53
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 / 𝑑 ) ∈ ℂ ) |
| 87 |
86
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · ( 1 / 𝑑 ) ) = ( 1 / 𝑑 ) ) |
| 88 |
85 87
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) ) · ( abs ‘ ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ≤ ( 1 / 𝑑 ) ) |
| 89 |
55 88
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) ≤ ( 1 / 𝑑 ) ) |
| 90 |
52 53 30 54 89
|
lemul1ad |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) · ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ≤ ( ( 1 / 𝑑 ) · ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ) |
| 91 |
43 29
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) = ( ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) ) · ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ) |
| 92 |
30
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ∈ ℂ ) |
| 93 |
92 71 72
|
divrec2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) = ( ( 1 / 𝑑 ) · ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ) |
| 94 |
90 91 93
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 95 |
18 49 32 94
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 96 |
46 50 33 51 95
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 97 |
33
|
leabsd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ≤ ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ) |
| 98 |
46 33 48 96 97
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ) |
| 99 |
98
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ≤ ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ) |
| 100 |
16 17 33 45 99
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( 𝐾 − 𝑇 ) ) ) ∈ 𝑂(1) ) |