| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrvmasum.f |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝐹 ∈ ℂ ) |
| 10 |
|
dchrvmasum.g |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → 𝐹 = 𝐾 ) |
| 11 |
|
dchrvmasum.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 12 |
|
dchrvmasum.t |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 13 |
|
dchrvmasum.1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 14 |
|
dchrvmasum.r |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 15 |
|
dchrvmasum.2 |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 1 [,) 3 ) ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ 𝑅 ) |
| 16 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 17 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 18 |
11 17
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 19 |
18
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
| 21 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∈ Fin ) |
| 22 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 23 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
| 24 |
23
|
nnrpd |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℝ+ ) |
| 25 |
|
rpdivcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 𝑑 ∈ ℝ+ ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 26 |
22 24 25
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ+ ) |
| 27 |
26
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑑 ) ) ∈ ℝ ) |
| 28 |
22
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
| 29 |
27 28
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ∈ ℝ ) |
| 30 |
21 29
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ∈ ℝ ) |
| 31 |
20 30
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ∈ ℝ ) |
| 32 |
|
3nn |
⊢ 3 ∈ ℕ |
| 33 |
|
nnrp |
⊢ ( 3 ∈ ℕ → 3 ∈ ℝ+ ) |
| 34 |
|
relogcl |
⊢ ( 3 ∈ ℝ+ → ( log ‘ 3 ) ∈ ℝ ) |
| 35 |
32 33 34
|
mp2b |
⊢ ( log ‘ 3 ) ∈ ℝ |
| 36 |
|
1re |
⊢ 1 ∈ ℝ |
| 37 |
35 36
|
readdcli |
⊢ ( ( log ‘ 3 ) + 1 ) ∈ ℝ |
| 38 |
|
remulcl |
⊢ ( ( 𝑅 ∈ ℝ ∧ ( ( log ‘ 3 ) + 1 ) ∈ ℝ ) → ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ∈ ℝ ) |
| 39 |
14 37 38
|
sylancl |
⊢ ( 𝜑 → ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ∈ ℝ ) |
| 40 |
39
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ∈ ℝ ) |
| 41 |
|
rpssre |
⊢ ℝ+ ⊆ ℝ |
| 42 |
19
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 43 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ 𝐶 ) ∈ 𝑂(1) ) |
| 44 |
41 42 43
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ 𝐶 ) ∈ 𝑂(1) ) |
| 45 |
|
logfacrlim2 |
⊢ ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ⇝𝑟 1 |
| 46 |
|
rlimo1 |
⊢ ( ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ⇝𝑟 1 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 47 |
45 46
|
mp1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ∈ 𝑂(1) ) |
| 48 |
20 30 44 47
|
o1mul2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ) ∈ 𝑂(1) ) |
| 49 |
39
|
recnd |
⊢ ( 𝜑 → ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ∈ ℂ ) |
| 50 |
|
o1const |
⊢ ( ( ℝ+ ⊆ ℝ ∧ ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ∈ ℂ ) → ( 𝑥 ∈ ℝ+ ↦ ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ∈ 𝑂(1) ) |
| 51 |
41 49 50
|
sylancr |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ∈ 𝑂(1) ) |
| 52 |
31 40 48 51
|
o1add2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) ∈ 𝑂(1) ) |
| 53 |
31 40
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ∈ ℝ ) |
| 54 |
10
|
eleq1d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( 𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ ) ) |
| 55 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℝ+ 𝐹 ∈ ℂ ) |
| 56 |
55
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑚 ∈ ℝ+ 𝐹 ∈ ℂ ) |
| 57 |
54 56 26
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐾 ∈ ℂ ) |
| 58 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑇 ∈ ℂ ) |
| 59 |
57 58
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐾 − 𝑇 ) ∈ ℂ ) |
| 60 |
59
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ∈ ℝ ) |
| 61 |
23
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
| 62 |
60 61
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℝ ) |
| 63 |
21 62
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ∈ ℂ ) |
| 65 |
61
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ+ ) |
| 66 |
59
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 67 |
60 65 66
|
divge0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 68 |
21 62 67
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 69 |
63 68
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) |
| 70 |
69 63
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ∈ ℝ ) |
| 71 |
53
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ∈ ℂ ) |
| 72 |
71
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) ∈ ℝ ) |
| 73 |
|
3re |
⊢ 3 ∈ ℝ |
| 74 |
73
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 3 ∈ ℝ ) |
| 75 |
|
1le3 |
⊢ 1 ≤ 3 |
| 76 |
74 75
|
jctir |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 3 ∈ ℝ ∧ 1 ≤ 3 ) ) |
| 77 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑅 ∈ ℝ ) |
| 78 |
36
|
rexri |
⊢ 1 ∈ ℝ* |
| 79 |
73
|
rexri |
⊢ 3 ∈ ℝ* |
| 80 |
|
1lt3 |
⊢ 1 < 3 |
| 81 |
|
lbico1 |
⊢ ( ( 1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3 ) → 1 ∈ ( 1 [,) 3 ) ) |
| 82 |
78 79 80 81
|
mp3an |
⊢ 1 ∈ ( 1 [,) 3 ) |
| 83 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 ∈ ℝ ) |
| 84 |
|
elico2 |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ* ) → ( 𝑚 ∈ ( 1 [,) 3 ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3 ) ) ) |
| 85 |
36 79 84
|
mp2an |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3 ) ) |
| 86 |
85
|
simp1bi |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 𝑚 ∈ ℝ ) |
| 87 |
|
0red |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 0 ∈ ℝ ) |
| 88 |
|
1red |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 1 ∈ ℝ ) |
| 89 |
|
0lt1 |
⊢ 0 < 1 |
| 90 |
89
|
a1i |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 0 < 1 ) |
| 91 |
85
|
simp2bi |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 1 ≤ 𝑚 ) |
| 92 |
87 88 86 90 91
|
ltletrd |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 0 < 𝑚 ) |
| 93 |
86 92
|
elrpd |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 𝑚 ∈ ℝ+ ) |
| 94 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝑇 ∈ ℂ ) |
| 95 |
9 94
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( 𝐹 − 𝑇 ) ∈ ℂ ) |
| 96 |
95
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) ∈ ℝ ) |
| 97 |
93 96
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) ∈ ℝ ) |
| 98 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 𝑅 ∈ ℝ ) |
| 99 |
95
|
absge0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 0 ≤ ( abs ‘ ( 𝐹 − 𝑇 ) ) ) |
| 100 |
93 99
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 ≤ ( abs ‘ ( 𝐹 − 𝑇 ) ) ) |
| 101 |
15
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ 𝑅 ) |
| 102 |
83 97 98 100 101
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 ≤ 𝑅 ) |
| 103 |
102
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 1 [,) 3 ) 0 ≤ 𝑅 ) |
| 104 |
|
biidd |
⊢ ( 𝑚 = 1 → ( 0 ≤ 𝑅 ↔ 0 ≤ 𝑅 ) ) |
| 105 |
104
|
rspcv |
⊢ ( 1 ∈ ( 1 [,) 3 ) → ( ∀ 𝑚 ∈ ( 1 [,) 3 ) 0 ≤ 𝑅 → 0 ≤ 𝑅 ) ) |
| 106 |
82 103 105
|
mpsyl |
⊢ ( 𝜑 → 0 ≤ 𝑅 ) |
| 107 |
106
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 0 ≤ 𝑅 ) |
| 108 |
77 107
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
| 109 |
60
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ∈ ℂ ) |
| 110 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
| 111 |
110 29
|
remulcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ∈ ℝ ) |
| 112 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 113 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 114 |
61
|
nncnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℂ ) |
| 115 |
114
|
mullidd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑑 ) = 𝑑 ) |
| 116 |
|
rpre |
⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) |
| 117 |
116
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
| 118 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
| 119 |
117 118
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
| 120 |
119
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ≤ 𝑥 ) |
| 121 |
115 120
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 · 𝑑 ) ≤ 𝑥 ) |
| 122 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
| 123 |
116
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
| 124 |
122 123 65
|
lemuldivd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 · 𝑑 ) ≤ 𝑥 ↔ 1 ≤ ( 𝑥 / 𝑑 ) ) ) |
| 125 |
121 124
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( 𝑥 / 𝑑 ) ) |
| 126 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 127 |
126
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ+ ) |
| 128 |
127 26
|
logled |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ≤ ( 𝑥 / 𝑑 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑑 ) ) ) ) |
| 129 |
125 128
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ 1 ) ≤ ( log ‘ ( 𝑥 / 𝑑 ) ) ) |
| 130 |
113 129
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( log ‘ ( 𝑥 / 𝑑 ) ) ) |
| 131 |
|
rpregt0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 132 |
131
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
| 133 |
|
divge0 |
⊢ ( ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ∈ ℝ ∧ 0 ≤ ( log ‘ ( 𝑥 / 𝑑 ) ) ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → 0 ≤ ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) |
| 134 |
27 130 132 133
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) |
| 135 |
|
mulge0 |
⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ∧ ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ∈ ℝ ∧ 0 ≤ ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ) → 0 ≤ ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ) |
| 136 |
112 29 134 135
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 0 ≤ ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ) |
| 137 |
|
absidm |
⊢ ( ( 𝐾 − 𝑇 ) ∈ ℂ → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) = ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 138 |
59 137
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) = ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 139 |
138
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) = ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 140 |
10
|
fvoveq1d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( abs ‘ ( 𝐹 − 𝑇 ) ) = ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 141 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( log ‘ 𝑚 ) = ( log ‘ ( 𝑥 / 𝑑 ) ) ) |
| 142 |
|
id |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → 𝑚 = ( 𝑥 / 𝑑 ) ) |
| 143 |
141 142
|
oveq12d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ( log ‘ 𝑚 ) / 𝑚 ) = ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) |
| 144 |
143
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) ) |
| 145 |
140 144
|
breq12d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ↔ ( abs ‘ ( 𝐾 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) ) ) |
| 146 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 3 [,) +∞ ) ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 147 |
146
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ∀ 𝑚 ∈ ( 3 [,) +∞ ) ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 148 |
|
nndivre |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
| 149 |
117 23 148
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
| 150 |
149
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
| 151 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → 3 ≤ ( 𝑥 / 𝑑 ) ) |
| 152 |
|
elicopnf |
⊢ ( 3 ∈ ℝ → ( ( 𝑥 / 𝑑 ) ∈ ( 3 [,) +∞ ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) ) ) |
| 153 |
73 152
|
ax-mp |
⊢ ( ( 𝑥 / 𝑑 ) ∈ ( 3 [,) +∞ ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) ) |
| 154 |
150 151 153
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( 𝑥 / 𝑑 ) ∈ ( 3 [,) +∞ ) ) |
| 155 |
145 147 154
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ≤ ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) ) |
| 156 |
27
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( log ‘ ( 𝑥 / 𝑑 ) ) ∈ ℂ ) |
| 157 |
|
rpcnne0 |
⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 158 |
157
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) |
| 159 |
65
|
rpcnne0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ) |
| 160 |
|
divdiv2 |
⊢ ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑑 ∈ ℂ ∧ 𝑑 ≠ 0 ) ) → ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) = ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) · 𝑑 ) / 𝑥 ) ) |
| 161 |
156 158 159 160
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) = ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) · 𝑑 ) / 𝑥 ) ) |
| 162 |
|
div23 |
⊢ ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑥 ≠ 0 ) ) → ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) · 𝑑 ) / 𝑥 ) = ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) · 𝑑 ) ) |
| 163 |
156 114 158 162
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) · 𝑑 ) / 𝑥 ) = ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) · 𝑑 ) ) |
| 164 |
161 163
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) = ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) · 𝑑 ) ) |
| 165 |
164
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) = ( 𝐶 · ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) · 𝑑 ) ) ) |
| 166 |
42
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
| 167 |
29
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ∈ ℂ ) |
| 168 |
166 167 114
|
mulassd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) · 𝑑 ) = ( 𝐶 · ( ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) · 𝑑 ) ) ) |
| 169 |
165 168
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) = ( ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) · 𝑑 ) ) |
| 170 |
169
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / ( 𝑥 / 𝑑 ) ) ) = ( ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) · 𝑑 ) ) |
| 171 |
155 170
|
breqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ≤ ( ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) · 𝑑 ) ) |
| 172 |
139 171
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 3 ≤ ( 𝑥 / 𝑑 ) ) → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ≤ ( ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) · 𝑑 ) ) |
| 173 |
138
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) = ( abs ‘ ( 𝐾 − 𝑇 ) ) ) |
| 174 |
140
|
breq1d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ 𝑅 ↔ ( abs ‘ ( 𝐾 − 𝑇 ) ) ≤ 𝑅 ) ) |
| 175 |
15
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ∀ 𝑚 ∈ ( 1 [,) 3 ) ( abs ‘ ( 𝐹 − 𝑇 ) ) ≤ 𝑅 ) |
| 176 |
149
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( 𝑥 / 𝑑 ) ∈ ℝ ) |
| 177 |
125
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → 1 ≤ ( 𝑥 / 𝑑 ) ) |
| 178 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( 𝑥 / 𝑑 ) < 3 ) |
| 179 |
|
elico2 |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ* ) → ( ( 𝑥 / 𝑑 ) ∈ ( 1 [,) 3 ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑑 ) ∧ ( 𝑥 / 𝑑 ) < 3 ) ) ) |
| 180 |
36 79 179
|
mp2an |
⊢ ( ( 𝑥 / 𝑑 ) ∈ ( 1 [,) 3 ) ↔ ( ( 𝑥 / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( 𝑥 / 𝑑 ) ∧ ( 𝑥 / 𝑑 ) < 3 ) ) |
| 181 |
176 177 178 180
|
syl3anbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( 𝑥 / 𝑑 ) ∈ ( 1 [,) 3 ) ) |
| 182 |
174 175 181
|
rspcdva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( abs ‘ ( 𝐾 − 𝑇 ) ) ≤ 𝑅 ) |
| 183 |
173 182
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ ( 𝑥 / 𝑑 ) < 3 ) → ( abs ‘ ( abs ‘ ( 𝐾 − 𝑇 ) ) ) ≤ 𝑅 ) |
| 184 |
22 76 108 109 111 136 172 183
|
fsumharmonic |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ≤ ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) |
| 185 |
42
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
| 186 |
21 185 167
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) = Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) ) |
| 187 |
186
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) = ( Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐶 · ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) |
| 188 |
184 187
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ≤ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) |
| 189 |
53
|
leabsd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ≤ ( abs ‘ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) ) |
| 190 |
70 53 72 188 189
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ≤ ( abs ‘ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) ) |
| 191 |
190
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥 ) ) → ( abs ‘ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ≤ ( abs ‘ ( ( 𝐶 · Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( log ‘ ( 𝑥 / 𝑑 ) ) / 𝑥 ) ) + ( 𝑅 · ( ( log ‘ 3 ) + 1 ) ) ) ) ) |
| 192 |
16 52 53 64 191
|
o1le |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( abs ‘ ( 𝐾 − 𝑇 ) ) / 𝑑 ) ) ∈ 𝑂(1) ) |