| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
|- Z = ( Z/nZ ` N ) |
| 2 |
|
rpvmasum.l |
|- L = ( ZRHom ` Z ) |
| 3 |
|
rpvmasum.a |
|- ( ph -> N e. NN ) |
| 4 |
|
rpvmasum.g |
|- G = ( DChr ` N ) |
| 5 |
|
rpvmasum.d |
|- D = ( Base ` G ) |
| 6 |
|
rpvmasum.1 |
|- .1. = ( 0g ` G ) |
| 7 |
|
dchrisum.b |
|- ( ph -> X e. D ) |
| 8 |
|
dchrisum.n1 |
|- ( ph -> X =/= .1. ) |
| 9 |
|
dchrvmasum.f |
|- ( ( ph /\ m e. RR+ ) -> F e. CC ) |
| 10 |
|
dchrvmasum.g |
|- ( m = ( x / d ) -> F = K ) |
| 11 |
|
dchrvmasum.c |
|- ( ph -> C e. ( 0 [,) +oo ) ) |
| 12 |
|
dchrvmasum.t |
|- ( ph -> T e. CC ) |
| 13 |
|
dchrvmasum.1 |
|- ( ( ph /\ m e. ( 3 [,) +oo ) ) -> ( abs ` ( F - T ) ) <_ ( C x. ( ( log ` m ) / m ) ) ) |
| 14 |
|
dchrvmasum.r |
|- ( ph -> R e. RR ) |
| 15 |
|
dchrvmasum.2 |
|- ( ph -> A. m e. ( 1 [,) 3 ) ( abs ` ( F - T ) ) <_ R ) |
| 16 |
|
1red |
|- ( ph -> 1 e. RR ) |
| 17 |
|
elrege0 |
|- ( C e. ( 0 [,) +oo ) <-> ( C e. RR /\ 0 <_ C ) ) |
| 18 |
11 17
|
sylib |
|- ( ph -> ( C e. RR /\ 0 <_ C ) ) |
| 19 |
18
|
simpld |
|- ( ph -> C e. RR ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> C e. RR ) |
| 21 |
|
fzfid |
|- ( ( ph /\ x e. RR+ ) -> ( 1 ... ( |_ ` x ) ) e. Fin ) |
| 22 |
|
simpr |
|- ( ( ph /\ x e. RR+ ) -> x e. RR+ ) |
| 23 |
|
elfznn |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. NN ) |
| 24 |
23
|
nnrpd |
|- ( d e. ( 1 ... ( |_ ` x ) ) -> d e. RR+ ) |
| 25 |
|
rpdivcl |
|- ( ( x e. RR+ /\ d e. RR+ ) -> ( x / d ) e. RR+ ) |
| 26 |
22 24 25
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR+ ) |
| 27 |
26
|
relogcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / d ) ) e. RR ) |
| 28 |
22
|
adantr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR+ ) |
| 29 |
27 28
|
rerpdivcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / d ) ) / x ) e. RR ) |
| 30 |
21 29
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) e. RR ) |
| 31 |
20 30
|
remulcld |
|- ( ( ph /\ x e. RR+ ) -> ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) e. RR ) |
| 32 |
|
3nn |
|- 3 e. NN |
| 33 |
|
nnrp |
|- ( 3 e. NN -> 3 e. RR+ ) |
| 34 |
|
relogcl |
|- ( 3 e. RR+ -> ( log ` 3 ) e. RR ) |
| 35 |
32 33 34
|
mp2b |
|- ( log ` 3 ) e. RR |
| 36 |
|
1re |
|- 1 e. RR |
| 37 |
35 36
|
readdcli |
|- ( ( log ` 3 ) + 1 ) e. RR |
| 38 |
|
remulcl |
|- ( ( R e. RR /\ ( ( log ` 3 ) + 1 ) e. RR ) -> ( R x. ( ( log ` 3 ) + 1 ) ) e. RR ) |
| 39 |
14 37 38
|
sylancl |
|- ( ph -> ( R x. ( ( log ` 3 ) + 1 ) ) e. RR ) |
| 40 |
39
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> ( R x. ( ( log ` 3 ) + 1 ) ) e. RR ) |
| 41 |
|
rpssre |
|- RR+ C_ RR |
| 42 |
19
|
recnd |
|- ( ph -> C e. CC ) |
| 43 |
|
o1const |
|- ( ( RR+ C_ RR /\ C e. CC ) -> ( x e. RR+ |-> C ) e. O(1) ) |
| 44 |
41 42 43
|
sylancr |
|- ( ph -> ( x e. RR+ |-> C ) e. O(1) ) |
| 45 |
|
logfacrlim2 |
|- ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) ~~>r 1 |
| 46 |
|
rlimo1 |
|- ( ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) ~~>r 1 -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) e. O(1) ) |
| 47 |
45 46
|
mp1i |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) e. O(1) ) |
| 48 |
20 30 44 47
|
o1mul2 |
|- ( ph -> ( x e. RR+ |-> ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) ) e. O(1) ) |
| 49 |
39
|
recnd |
|- ( ph -> ( R x. ( ( log ` 3 ) + 1 ) ) e. CC ) |
| 50 |
|
o1const |
|- ( ( RR+ C_ RR /\ ( R x. ( ( log ` 3 ) + 1 ) ) e. CC ) -> ( x e. RR+ |-> ( R x. ( ( log ` 3 ) + 1 ) ) ) e. O(1) ) |
| 51 |
41 49 50
|
sylancr |
|- ( ph -> ( x e. RR+ |-> ( R x. ( ( log ` 3 ) + 1 ) ) ) e. O(1) ) |
| 52 |
31 40 48 51
|
o1add2 |
|- ( ph -> ( x e. RR+ |-> ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) e. O(1) ) |
| 53 |
31 40
|
readdcld |
|- ( ( ph /\ x e. RR+ ) -> ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) e. RR ) |
| 54 |
10
|
eleq1d |
|- ( m = ( x / d ) -> ( F e. CC <-> K e. CC ) ) |
| 55 |
9
|
ralrimiva |
|- ( ph -> A. m e. RR+ F e. CC ) |
| 56 |
55
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> A. m e. RR+ F e. CC ) |
| 57 |
54 56 26
|
rspcdva |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> K e. CC ) |
| 58 |
12
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> T e. CC ) |
| 59 |
57 58
|
subcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( K - T ) e. CC ) |
| 60 |
59
|
abscld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( K - T ) ) e. RR ) |
| 61 |
23
|
adantl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. NN ) |
| 62 |
60 61
|
nndivred |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( abs ` ( K - T ) ) / d ) e. RR ) |
| 63 |
21 62
|
fsumrecl |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) e. RR ) |
| 64 |
63
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) e. CC ) |
| 65 |
61
|
nnrpd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. RR+ ) |
| 66 |
59
|
absge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( abs ` ( K - T ) ) ) |
| 67 |
60 65 66
|
divge0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( abs ` ( K - T ) ) / d ) ) |
| 68 |
21 62 67
|
fsumge0 |
|- ( ( ph /\ x e. RR+ ) -> 0 <_ sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) |
| 69 |
63 68
|
absidd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) |
| 70 |
69 63
|
eqeltrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) e. RR ) |
| 71 |
53
|
recnd |
|- ( ( ph /\ x e. RR+ ) -> ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) e. CC ) |
| 72 |
71
|
abscld |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) e. RR ) |
| 73 |
|
3re |
|- 3 e. RR |
| 74 |
73
|
a1i |
|- ( ( ph /\ x e. RR+ ) -> 3 e. RR ) |
| 75 |
|
1le3 |
|- 1 <_ 3 |
| 76 |
74 75
|
jctir |
|- ( ( ph /\ x e. RR+ ) -> ( 3 e. RR /\ 1 <_ 3 ) ) |
| 77 |
14
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> R e. RR ) |
| 78 |
36
|
rexri |
|- 1 e. RR* |
| 79 |
73
|
rexri |
|- 3 e. RR* |
| 80 |
|
1lt3 |
|- 1 < 3 |
| 81 |
|
lbico1 |
|- ( ( 1 e. RR* /\ 3 e. RR* /\ 1 < 3 ) -> 1 e. ( 1 [,) 3 ) ) |
| 82 |
78 79 80 81
|
mp3an |
|- 1 e. ( 1 [,) 3 ) |
| 83 |
|
0red |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 e. RR ) |
| 84 |
|
elico2 |
|- ( ( 1 e. RR /\ 3 e. RR* ) -> ( m e. ( 1 [,) 3 ) <-> ( m e. RR /\ 1 <_ m /\ m < 3 ) ) ) |
| 85 |
36 79 84
|
mp2an |
|- ( m e. ( 1 [,) 3 ) <-> ( m e. RR /\ 1 <_ m /\ m < 3 ) ) |
| 86 |
85
|
simp1bi |
|- ( m e. ( 1 [,) 3 ) -> m e. RR ) |
| 87 |
|
0red |
|- ( m e. ( 1 [,) 3 ) -> 0 e. RR ) |
| 88 |
|
1red |
|- ( m e. ( 1 [,) 3 ) -> 1 e. RR ) |
| 89 |
|
0lt1 |
|- 0 < 1 |
| 90 |
89
|
a1i |
|- ( m e. ( 1 [,) 3 ) -> 0 < 1 ) |
| 91 |
85
|
simp2bi |
|- ( m e. ( 1 [,) 3 ) -> 1 <_ m ) |
| 92 |
87 88 86 90 91
|
ltletrd |
|- ( m e. ( 1 [,) 3 ) -> 0 < m ) |
| 93 |
86 92
|
elrpd |
|- ( m e. ( 1 [,) 3 ) -> m e. RR+ ) |
| 94 |
12
|
adantr |
|- ( ( ph /\ m e. RR+ ) -> T e. CC ) |
| 95 |
9 94
|
subcld |
|- ( ( ph /\ m e. RR+ ) -> ( F - T ) e. CC ) |
| 96 |
95
|
abscld |
|- ( ( ph /\ m e. RR+ ) -> ( abs ` ( F - T ) ) e. RR ) |
| 97 |
93 96
|
sylan2 |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` ( F - T ) ) e. RR ) |
| 98 |
14
|
adantr |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> R e. RR ) |
| 99 |
95
|
absge0d |
|- ( ( ph /\ m e. RR+ ) -> 0 <_ ( abs ` ( F - T ) ) ) |
| 100 |
93 99
|
sylan2 |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 <_ ( abs ` ( F - T ) ) ) |
| 101 |
15
|
r19.21bi |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> ( abs ` ( F - T ) ) <_ R ) |
| 102 |
83 97 98 100 101
|
letrd |
|- ( ( ph /\ m e. ( 1 [,) 3 ) ) -> 0 <_ R ) |
| 103 |
102
|
ralrimiva |
|- ( ph -> A. m e. ( 1 [,) 3 ) 0 <_ R ) |
| 104 |
|
biidd |
|- ( m = 1 -> ( 0 <_ R <-> 0 <_ R ) ) |
| 105 |
104
|
rspcv |
|- ( 1 e. ( 1 [,) 3 ) -> ( A. m e. ( 1 [,) 3 ) 0 <_ R -> 0 <_ R ) ) |
| 106 |
82 103 105
|
mpsyl |
|- ( ph -> 0 <_ R ) |
| 107 |
106
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> 0 <_ R ) |
| 108 |
77 107
|
jca |
|- ( ( ph /\ x e. RR+ ) -> ( R e. RR /\ 0 <_ R ) ) |
| 109 |
60
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( K - T ) ) e. CC ) |
| 110 |
19
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> C e. RR ) |
| 111 |
110 29
|
remulcld |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( C x. ( ( log ` ( x / d ) ) / x ) ) e. RR ) |
| 112 |
18
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( C e. RR /\ 0 <_ C ) ) |
| 113 |
|
log1 |
|- ( log ` 1 ) = 0 |
| 114 |
61
|
nncnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d e. CC ) |
| 115 |
114
|
mullidd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. d ) = d ) |
| 116 |
|
rpre |
|- ( x e. RR+ -> x e. RR ) |
| 117 |
116
|
adantl |
|- ( ( ph /\ x e. RR+ ) -> x e. RR ) |
| 118 |
|
fznnfl |
|- ( x e. RR -> ( d e. ( 1 ... ( |_ ` x ) ) <-> ( d e. NN /\ d <_ x ) ) ) |
| 119 |
117 118
|
syl |
|- ( ( ph /\ x e. RR+ ) -> ( d e. ( 1 ... ( |_ ` x ) ) <-> ( d e. NN /\ d <_ x ) ) ) |
| 120 |
119
|
simplbda |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> d <_ x ) |
| 121 |
115 120
|
eqbrtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 x. d ) <_ x ) |
| 122 |
|
1red |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR ) |
| 123 |
116
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> x e. RR ) |
| 124 |
122 123 65
|
lemuldivd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( 1 x. d ) <_ x <-> 1 <_ ( x / d ) ) ) |
| 125 |
121 124
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 1 <_ ( x / d ) ) |
| 126 |
|
1rp |
|- 1 e. RR+ |
| 127 |
126
|
a1i |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 1 e. RR+ ) |
| 128 |
127 26
|
logled |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( 1 <_ ( x / d ) <-> ( log ` 1 ) <_ ( log ` ( x / d ) ) ) ) |
| 129 |
125 128
|
mpbid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` 1 ) <_ ( log ` ( x / d ) ) ) |
| 130 |
113 129
|
eqbrtrrid |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( log ` ( x / d ) ) ) |
| 131 |
|
rpregt0 |
|- ( x e. RR+ -> ( x e. RR /\ 0 < x ) ) |
| 132 |
131
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. RR /\ 0 < x ) ) |
| 133 |
|
divge0 |
|- ( ( ( ( log ` ( x / d ) ) e. RR /\ 0 <_ ( log ` ( x / d ) ) ) /\ ( x e. RR /\ 0 < x ) ) -> 0 <_ ( ( log ` ( x / d ) ) / x ) ) |
| 134 |
27 130 132 133
|
syl21anc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( ( log ` ( x / d ) ) / x ) ) |
| 135 |
|
mulge0 |
|- ( ( ( C e. RR /\ 0 <_ C ) /\ ( ( ( log ` ( x / d ) ) / x ) e. RR /\ 0 <_ ( ( log ` ( x / d ) ) / x ) ) ) -> 0 <_ ( C x. ( ( log ` ( x / d ) ) / x ) ) ) |
| 136 |
112 29 134 135
|
syl12anc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> 0 <_ ( C x. ( ( log ` ( x / d ) ) / x ) ) ) |
| 137 |
|
absidm |
|- ( ( K - T ) e. CC -> ( abs ` ( abs ` ( K - T ) ) ) = ( abs ` ( K - T ) ) ) |
| 138 |
59 137
|
syl |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( abs ` ( abs ` ( K - T ) ) ) = ( abs ` ( K - T ) ) ) |
| 139 |
138
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( abs ` ( abs ` ( K - T ) ) ) = ( abs ` ( K - T ) ) ) |
| 140 |
10
|
fvoveq1d |
|- ( m = ( x / d ) -> ( abs ` ( F - T ) ) = ( abs ` ( K - T ) ) ) |
| 141 |
|
fveq2 |
|- ( m = ( x / d ) -> ( log ` m ) = ( log ` ( x / d ) ) ) |
| 142 |
|
id |
|- ( m = ( x / d ) -> m = ( x / d ) ) |
| 143 |
141 142
|
oveq12d |
|- ( m = ( x / d ) -> ( ( log ` m ) / m ) = ( ( log ` ( x / d ) ) / ( x / d ) ) ) |
| 144 |
143
|
oveq2d |
|- ( m = ( x / d ) -> ( C x. ( ( log ` m ) / m ) ) = ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) ) |
| 145 |
140 144
|
breq12d |
|- ( m = ( x / d ) -> ( ( abs ` ( F - T ) ) <_ ( C x. ( ( log ` m ) / m ) ) <-> ( abs ` ( K - T ) ) <_ ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) ) ) |
| 146 |
13
|
ralrimiva |
|- ( ph -> A. m e. ( 3 [,) +oo ) ( abs ` ( F - T ) ) <_ ( C x. ( ( log ` m ) / m ) ) ) |
| 147 |
146
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> A. m e. ( 3 [,) +oo ) ( abs ` ( F - T ) ) <_ ( C x. ( ( log ` m ) / m ) ) ) |
| 148 |
|
nndivre |
|- ( ( x e. RR /\ d e. NN ) -> ( x / d ) e. RR ) |
| 149 |
117 23 148
|
syl2an |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x / d ) e. RR ) |
| 150 |
149
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( x / d ) e. RR ) |
| 151 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> 3 <_ ( x / d ) ) |
| 152 |
|
elicopnf |
|- ( 3 e. RR -> ( ( x / d ) e. ( 3 [,) +oo ) <-> ( ( x / d ) e. RR /\ 3 <_ ( x / d ) ) ) ) |
| 153 |
73 152
|
ax-mp |
|- ( ( x / d ) e. ( 3 [,) +oo ) <-> ( ( x / d ) e. RR /\ 3 <_ ( x / d ) ) ) |
| 154 |
150 151 153
|
sylanbrc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( x / d ) e. ( 3 [,) +oo ) ) |
| 155 |
145 147 154
|
rspcdva |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( abs ` ( K - T ) ) <_ ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) ) |
| 156 |
27
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( log ` ( x / d ) ) e. CC ) |
| 157 |
|
rpcnne0 |
|- ( x e. RR+ -> ( x e. CC /\ x =/= 0 ) ) |
| 158 |
157
|
ad2antlr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( x e. CC /\ x =/= 0 ) ) |
| 159 |
65
|
rpcnne0d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( d e. CC /\ d =/= 0 ) ) |
| 160 |
|
divdiv2 |
|- ( ( ( log ` ( x / d ) ) e. CC /\ ( x e. CC /\ x =/= 0 ) /\ ( d e. CC /\ d =/= 0 ) ) -> ( ( log ` ( x / d ) ) / ( x / d ) ) = ( ( ( log ` ( x / d ) ) x. d ) / x ) ) |
| 161 |
156 158 159 160
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / d ) ) / ( x / d ) ) = ( ( ( log ` ( x / d ) ) x. d ) / x ) ) |
| 162 |
|
div23 |
|- ( ( ( log ` ( x / d ) ) e. CC /\ d e. CC /\ ( x e. CC /\ x =/= 0 ) ) -> ( ( ( log ` ( x / d ) ) x. d ) / x ) = ( ( ( log ` ( x / d ) ) / x ) x. d ) ) |
| 163 |
156 114 158 162
|
syl3anc |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( ( log ` ( x / d ) ) x. d ) / x ) = ( ( ( log ` ( x / d ) ) / x ) x. d ) ) |
| 164 |
161 163
|
eqtrd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / d ) ) / ( x / d ) ) = ( ( ( log ` ( x / d ) ) / x ) x. d ) ) |
| 165 |
164
|
oveq2d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) = ( C x. ( ( ( log ` ( x / d ) ) / x ) x. d ) ) ) |
| 166 |
42
|
ad2antrr |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> C e. CC ) |
| 167 |
29
|
recnd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( log ` ( x / d ) ) / x ) e. CC ) |
| 168 |
166 167 114
|
mulassd |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( ( C x. ( ( log ` ( x / d ) ) / x ) ) x. d ) = ( C x. ( ( ( log ` ( x / d ) ) / x ) x. d ) ) ) |
| 169 |
165 168
|
eqtr4d |
|- ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) -> ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) = ( ( C x. ( ( log ` ( x / d ) ) / x ) ) x. d ) ) |
| 170 |
169
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( C x. ( ( log ` ( x / d ) ) / ( x / d ) ) ) = ( ( C x. ( ( log ` ( x / d ) ) / x ) ) x. d ) ) |
| 171 |
155 170
|
breqtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( abs ` ( K - T ) ) <_ ( ( C x. ( ( log ` ( x / d ) ) / x ) ) x. d ) ) |
| 172 |
139 171
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ 3 <_ ( x / d ) ) -> ( abs ` ( abs ` ( K - T ) ) ) <_ ( ( C x. ( ( log ` ( x / d ) ) / x ) ) x. d ) ) |
| 173 |
138
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( abs ` ( abs ` ( K - T ) ) ) = ( abs ` ( K - T ) ) ) |
| 174 |
140
|
breq1d |
|- ( m = ( x / d ) -> ( ( abs ` ( F - T ) ) <_ R <-> ( abs ` ( K - T ) ) <_ R ) ) |
| 175 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> A. m e. ( 1 [,) 3 ) ( abs ` ( F - T ) ) <_ R ) |
| 176 |
149
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( x / d ) e. RR ) |
| 177 |
125
|
adantr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> 1 <_ ( x / d ) ) |
| 178 |
|
simpr |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( x / d ) < 3 ) |
| 179 |
|
elico2 |
|- ( ( 1 e. RR /\ 3 e. RR* ) -> ( ( x / d ) e. ( 1 [,) 3 ) <-> ( ( x / d ) e. RR /\ 1 <_ ( x / d ) /\ ( x / d ) < 3 ) ) ) |
| 180 |
36 79 179
|
mp2an |
|- ( ( x / d ) e. ( 1 [,) 3 ) <-> ( ( x / d ) e. RR /\ 1 <_ ( x / d ) /\ ( x / d ) < 3 ) ) |
| 181 |
176 177 178 180
|
syl3anbrc |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( x / d ) e. ( 1 [,) 3 ) ) |
| 182 |
174 175 181
|
rspcdva |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( abs ` ( K - T ) ) <_ R ) |
| 183 |
173 182
|
eqbrtrd |
|- ( ( ( ( ph /\ x e. RR+ ) /\ d e. ( 1 ... ( |_ ` x ) ) ) /\ ( x / d ) < 3 ) -> ( abs ` ( abs ` ( K - T ) ) ) <_ R ) |
| 184 |
22 76 108 109 111 136 172 183
|
fsumharmonic |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) <_ ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( C x. ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) |
| 185 |
42
|
adantr |
|- ( ( ph /\ x e. RR+ ) -> C e. CC ) |
| 186 |
21 185 167
|
fsummulc2 |
|- ( ( ph /\ x e. RR+ ) -> ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) = sum_ d e. ( 1 ... ( |_ ` x ) ) ( C x. ( ( log ` ( x / d ) ) / x ) ) ) |
| 187 |
186
|
oveq1d |
|- ( ( ph /\ x e. RR+ ) -> ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) = ( sum_ d e. ( 1 ... ( |_ ` x ) ) ( C x. ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) |
| 188 |
184 187
|
breqtrrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) <_ ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) |
| 189 |
53
|
leabsd |
|- ( ( ph /\ x e. RR+ ) -> ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) <_ ( abs ` ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) ) |
| 190 |
70 53 72 188 189
|
letrd |
|- ( ( ph /\ x e. RR+ ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) <_ ( abs ` ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) ) |
| 191 |
190
|
adantrr |
|- ( ( ph /\ ( x e. RR+ /\ 1 <_ x ) ) -> ( abs ` sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) <_ ( abs ` ( ( C x. sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( log ` ( x / d ) ) / x ) ) + ( R x. ( ( log ` 3 ) + 1 ) ) ) ) ) |
| 192 |
16 52 53 64 191
|
o1le |
|- ( ph -> ( x e. RR+ |-> sum_ d e. ( 1 ... ( |_ ` x ) ) ( ( abs ` ( K - T ) ) / d ) ) e. O(1) ) |