| Step |
Hyp |
Ref |
Expression |
| 1 |
|
o1add2.1 |
|- ( ( ph /\ x e. A ) -> B e. V ) |
| 2 |
|
o1add2.2 |
|- ( ( ph /\ x e. A ) -> C e. V ) |
| 3 |
|
o1add2.3 |
|- ( ph -> ( x e. A |-> B ) e. O(1) ) |
| 4 |
|
o1add2.4 |
|- ( ph -> ( x e. A |-> C ) e. O(1) ) |
| 5 |
1
|
ralrimiva |
|- ( ph -> A. x e. A B e. V ) |
| 6 |
|
dmmptg |
|- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
| 7 |
5 6
|
syl |
|- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 |
|
o1dm |
|- ( ( x e. A |-> B ) e. O(1) -> dom ( x e. A |-> B ) C_ RR ) |
| 9 |
3 8
|
syl |
|- ( ph -> dom ( x e. A |-> B ) C_ RR ) |
| 10 |
7 9
|
eqsstrrd |
|- ( ph -> A C_ RR ) |
| 11 |
|
reex |
|- RR e. _V |
| 12 |
11
|
ssex |
|- ( A C_ RR -> A e. _V ) |
| 13 |
10 12
|
syl |
|- ( ph -> A e. _V ) |
| 14 |
|
eqidd |
|- ( ph -> ( x e. A |-> B ) = ( x e. A |-> B ) ) |
| 15 |
|
eqidd |
|- ( ph -> ( x e. A |-> C ) = ( x e. A |-> C ) ) |
| 16 |
13 1 2 14 15
|
offval2 |
|- ( ph -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) = ( x e. A |-> ( B x. C ) ) ) |
| 17 |
|
o1mul |
|- ( ( ( x e. A |-> B ) e. O(1) /\ ( x e. A |-> C ) e. O(1) ) -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) e. O(1) ) |
| 18 |
3 4 17
|
syl2anc |
|- ( ph -> ( ( x e. A |-> B ) oF x. ( x e. A |-> C ) ) e. O(1) ) |
| 19 |
16 18
|
eqeltrrd |
|- ( ph -> ( x e. A |-> ( B x. C ) ) e. O(1) ) |