| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fsumharmonic.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ+ ) |
| 2 |
|
fsumharmonic.t |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 1 ≤ 𝑇 ) ) |
| 3 |
|
fsumharmonic.r |
⊢ ( 𝜑 → ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) |
| 4 |
|
fsumharmonic.b |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐵 ∈ ℂ ) |
| 5 |
|
fsumharmonic.c |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐶 ∈ ℝ ) |
| 6 |
|
fsumharmonic.0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 0 ≤ 𝐶 ) |
| 7 |
|
fsumharmonic.1 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) |
| 8 |
|
fsumharmonic.2 |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) ∧ ( 𝐴 / 𝑛 ) < 𝑇 ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
| 9 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 10 |
|
elfznn |
⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) → 𝑛 ∈ ℕ ) |
| 11 |
10
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 12 |
11
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
| 13 |
11
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
| 14 |
4 12 13
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐵 / 𝑛 ) ∈ ℂ ) |
| 15 |
9 14
|
fsumcl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ∈ ℂ ) |
| 16 |
15
|
abscld |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ∈ ℝ ) |
| 17 |
4
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 18 |
17 11
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 19 |
9 18
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 20 |
9 5
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ∈ ℝ ) |
| 21 |
3
|
simpld |
⊢ ( 𝜑 → 𝑅 ∈ ℝ ) |
| 22 |
2
|
simpld |
⊢ ( 𝜑 → 𝑇 ∈ ℝ ) |
| 23 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 24 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 25 |
|
0lt1 |
⊢ 0 < 1 |
| 26 |
25
|
a1i |
⊢ ( 𝜑 → 0 < 1 ) |
| 27 |
2
|
simprd |
⊢ ( 𝜑 → 1 ≤ 𝑇 ) |
| 28 |
23 24 22 26 27
|
ltletrd |
⊢ ( 𝜑 → 0 < 𝑇 ) |
| 29 |
22 28
|
elrpd |
⊢ ( 𝜑 → 𝑇 ∈ ℝ+ ) |
| 30 |
29
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℝ ) |
| 31 |
30 24
|
readdcld |
⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 32 |
21 31
|
remulcld |
⊢ ( 𝜑 → ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ∈ ℝ ) |
| 33 |
20 32
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ∈ ℝ ) |
| 34 |
9 14
|
fsumabs |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) ) |
| 35 |
4 12 13
|
absdivd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) ) |
| 36 |
11
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 37 |
36
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) ) |
| 38 |
|
absid |
⊢ ( ( 𝑛 ∈ ℝ ∧ 0 ≤ 𝑛 ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 39 |
37 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝑛 ) = 𝑛 ) |
| 40 |
39
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / ( abs ‘ 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 41 |
35 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ ( 𝐵 / 𝑛 ) ) = ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 42 |
41
|
sumeq2dv |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( abs ‘ ( 𝐵 / 𝑛 ) ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 43 |
34 42
|
breqtrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) |
| 44 |
1 29
|
rpdivcld |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ+ ) |
| 45 |
44
|
rprege0d |
⊢ ( 𝜑 → ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 46 |
|
flge0nn0 |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 0 ≤ ( 𝐴 / 𝑇 ) ) → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) |
| 47 |
45 46
|
syl |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 ) |
| 48 |
47
|
nn0red |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
| 49 |
48
|
ltp1d |
⊢ ( 𝜑 → ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ) |
| 50 |
|
fzdisj |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) < ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) |
| 51 |
49 50
|
syl |
⊢ ( 𝜑 → ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) = ∅ ) |
| 52 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) |
| 53 |
47 52
|
syl |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ℕ ) |
| 54 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 55 |
53 54
|
eleqtrdi |
⊢ ( 𝜑 → ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 56 |
44
|
rpred |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ∈ ℝ ) |
| 57 |
1
|
rpred |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 58 |
22 28
|
jca |
⊢ ( 𝜑 → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
| 59 |
1
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) |
| 60 |
|
lediv2 |
⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) |
| 61 |
24 26 58 59 60
|
syl211anc |
⊢ ( 𝜑 → ( 1 ≤ 𝑇 ↔ ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) ) |
| 62 |
27 61
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ ( 𝐴 / 1 ) ) |
| 63 |
57
|
recnd |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 64 |
63
|
div1d |
⊢ ( 𝜑 → ( 𝐴 / 1 ) = 𝐴 ) |
| 65 |
62 64
|
breqtrd |
⊢ ( 𝜑 → ( 𝐴 / 𝑇 ) ≤ 𝐴 ) |
| 66 |
|
flword2 |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐴 / 𝑇 ) ≤ 𝐴 ) → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 67 |
56 57 65 66
|
syl3anc |
⊢ ( 𝜑 → ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 68 |
|
fzsplit2 |
⊢ ( ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ 𝐴 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 69 |
55 67 68
|
syl2anc |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 70 |
18
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℂ ) |
| 71 |
51 69 9 70
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ) |
| 72 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) |
| 73 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) |
| 74 |
73 69
|
sseqtrrid |
⊢ ( 𝜑 → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 75 |
74
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 76 |
75 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 77 |
72 76
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 78 |
|
fzfid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ∈ Fin ) |
| 79 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∪ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) |
| 80 |
79 69
|
sseqtrrid |
⊢ ( 𝜑 → ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 81 |
80
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) |
| 82 |
81 18
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 83 |
78 82
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ∈ ℝ ) |
| 84 |
75 5
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐶 ∈ ℝ ) |
| 85 |
72 84
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ∈ ℝ ) |
| 86 |
|
fznnfl |
⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) |
| 87 |
56 86
|
syl |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ ( 𝑛 ∈ ℕ ∧ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) ) |
| 88 |
87
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ≤ ( 𝐴 / 𝑇 ) ) |
| 89 |
36
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ ) |
| 90 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 91 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) |
| 92 |
|
lemuldiv2 |
⊢ ( ( 𝑛 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝑇 ∈ ℝ ∧ 0 < 𝑇 ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 93 |
89 90 91 92
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 94 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
| 95 |
94 90 36
|
lemuldivd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝑇 · 𝑛 ) ≤ 𝐴 ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 96 |
93 95
|
bitr3d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 97 |
75 96
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑛 ≤ ( 𝐴 / 𝑇 ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 98 |
88 97
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
| 99 |
7
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 100 |
75 99
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 𝑇 ≤ ( 𝐴 / 𝑛 ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 101 |
98 100
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) |
| 102 |
75 4
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝐵 ∈ ℂ ) |
| 103 |
102
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 104 |
75 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℕ ) |
| 105 |
104
|
nnrpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 106 |
103 84 105
|
ledivmul2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ↔ ( abs ‘ 𝐵 ) ≤ ( 𝐶 · 𝑛 ) ) ) |
| 107 |
101 106
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ 𝐶 ) |
| 108 |
72 76 84 107
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ) |
| 109 |
9 5 6 74
|
fsumless |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) 𝐶 ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
| 110 |
77 85 20 108 109
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 ) |
| 111 |
81 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℕ ) |
| 112 |
111
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 113 |
78 112
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 114 |
21 113
|
remulcld |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 115 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℝ ) |
| 116 |
115
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑅 ∈ ℂ ) |
| 117 |
111
|
nncnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℂ ) |
| 118 |
111
|
nnne0d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ≠ 0 ) |
| 119 |
116 117 118
|
divrecd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) = ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 120 |
115 111
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 / 𝑛 ) ∈ ℝ ) |
| 121 |
119 120
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑅 · ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 122 |
81 17
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 123 |
81 36
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑛 ∈ ℝ+ ) |
| 124 |
|
noel |
⊢ ¬ 𝑛 ∈ ∅ |
| 125 |
|
elin |
⊢ ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 126 |
51
|
eleq2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∩ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
| 127 |
125 126
|
bitr3id |
⊢ ( 𝜑 → ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ 𝑛 ∈ ∅ ) ) |
| 128 |
124 127
|
mtbiri |
⊢ ( 𝜑 → ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 129 |
|
imnan |
⊢ ( ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ↔ ¬ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 130 |
128 129
|
sylibr |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) → ¬ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) ) |
| 131 |
130
|
con2d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 132 |
131
|
imp |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 133 |
86
|
baibd |
⊢ ( ( ( 𝐴 / 𝑇 ) ∈ ℝ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 134 |
56 10 133
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑛 ≤ ( 𝐴 / 𝑇 ) ) ) |
| 135 |
134 96
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 136 |
81 135
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ↔ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 137 |
132 136
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) |
| 138 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝐴 ∈ ℝ ) |
| 139 |
138 111
|
nndivred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) ∈ ℝ ) |
| 140 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → 𝑇 ∈ ℝ ) |
| 141 |
139 140
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 ↔ ¬ 𝑇 ≤ ( 𝐴 / 𝑛 ) ) ) |
| 142 |
137 141
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 𝐴 / 𝑛 ) < 𝑇 ) |
| 143 |
8
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
| 144 |
81 143
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( 𝐴 / 𝑛 ) < 𝑇 → ( abs ‘ 𝐵 ) ≤ 𝑅 ) ) |
| 145 |
142 144
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( abs ‘ 𝐵 ) ≤ 𝑅 ) |
| 146 |
122 115 123 145
|
lediv1dd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 / 𝑛 ) ) |
| 147 |
146 119
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 148 |
78 82 121 147
|
fsumle |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 149 |
21
|
recnd |
⊢ ( 𝜑 → 𝑅 ∈ ℂ ) |
| 150 |
112
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 151 |
78 149 150
|
fsummulc2 |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 𝑅 · ( 1 / 𝑛 ) ) ) |
| 152 |
148 151
|
breqtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
| 153 |
104
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 154 |
72 153
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 155 |
154
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 156 |
113
|
recnd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℂ ) |
| 157 |
11
|
nnrecred |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 158 |
157
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ) → ( 1 / 𝑛 ) ∈ ℂ ) |
| 159 |
51 69 9 158
|
fsumsplit |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) = ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ) |
| 160 |
155 156 159
|
mvrladdd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) = Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) |
| 161 |
9 157
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 163 |
154
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) |
| 164 |
162 163
|
resubcld |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ∈ ℝ ) |
| 165 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ∈ ℝ ) |
| 166 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ) |
| 167 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ∈ Fin ) |
| 168 |
105
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 𝑛 ∈ ℝ+ ) |
| 169 |
168
|
rpreccld |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ+ ) |
| 170 |
169
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → ( 1 / 𝑛 ) ∈ ℝ ) |
| 171 |
169
|
rpge0d |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 1 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) → 0 ≤ ( 1 / 𝑛 ) ) |
| 172 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ+ ) |
| 173 |
172
|
rpge0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ 𝐴 ) |
| 174 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < 1 ) |
| 175 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
| 176 |
174 175
|
breqtrrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 < ( 0 + 1 ) ) |
| 177 |
57
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 𝐴 ∈ ℝ ) |
| 178 |
|
0z |
⊢ 0 ∈ ℤ |
| 179 |
|
flbi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) |
| 180 |
177 178 179
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( ⌊ ‘ 𝐴 ) = 0 ↔ ( 0 ≤ 𝐴 ∧ 𝐴 < ( 0 + 1 ) ) ) ) |
| 181 |
173 176 180
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ⌊ ‘ 𝐴 ) = 0 ) |
| 182 |
181
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ( 1 ... 0 ) ) |
| 183 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 184 |
182 183
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) = ∅ ) |
| 185 |
|
0ss |
⊢ ∅ ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) |
| 186 |
184 185
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 187 |
167 170 171 186
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 188 |
162 163
|
suble0d |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ↔ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ) |
| 189 |
187 188
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ 0 ) |
| 190 |
22 27
|
logge0d |
⊢ ( 𝜑 → 0 ≤ ( log ‘ 𝑇 ) ) |
| 191 |
|
0le1 |
⊢ 0 ≤ 1 |
| 192 |
191
|
a1i |
⊢ ( 𝜑 → 0 ≤ 1 ) |
| 193 |
30 24 190 192
|
addge0d |
⊢ ( 𝜑 → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → 0 ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 195 |
164 165 166 189 194
|
letrd |
⊢ ( ( 𝜑 ∧ 𝐴 < 1 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 196 |
|
harmonicubnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| 197 |
57 196
|
sylan |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ) |
| 198 |
|
harmoniclbnd |
⊢ ( ( 𝐴 / 𝑇 ) ∈ ℝ+ → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 199 |
44 198
|
syl |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 200 |
199
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) |
| 201 |
1
|
relogcld |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℝ ) |
| 202 |
|
peano2re |
⊢ ( ( log ‘ 𝐴 ) ∈ ℝ → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 203 |
201 202
|
syl |
⊢ ( 𝜑 → ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ) |
| 204 |
44
|
relogcld |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) |
| 205 |
|
le2sub |
⊢ ( ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ∈ ℝ ) ∧ ( ( ( log ‘ 𝐴 ) + 1 ) ∈ ℝ ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ∈ ℝ ) ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 206 |
161 154 203 204 205
|
syl22anc |
⊢ ( 𝜑 → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 207 |
206
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝐴 ) + 1 ) ∧ ( log ‘ ( 𝐴 / 𝑇 ) ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) ) |
| 208 |
197 200 207
|
mp2and |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) ) |
| 209 |
201
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝐴 ) ∈ ℂ ) |
| 210 |
24
|
recnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 211 |
30
|
recnd |
⊢ ( 𝜑 → ( log ‘ 𝑇 ) ∈ ℂ ) |
| 212 |
209 210 211
|
pnncand |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
| 213 |
1 29
|
relogdivd |
⊢ ( 𝜑 → ( log ‘ ( 𝐴 / 𝑇 ) ) = ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) |
| 214 |
213
|
oveq2d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( ( log ‘ 𝐴 ) + 1 ) − ( ( log ‘ 𝐴 ) − ( log ‘ 𝑇 ) ) ) ) |
| 215 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 216 |
|
addcom |
⊢ ( ( ( log ‘ 𝑇 ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
| 217 |
211 215 216
|
sylancl |
⊢ ( 𝜑 → ( ( log ‘ 𝑇 ) + 1 ) = ( 1 + ( log ‘ 𝑇 ) ) ) |
| 218 |
212 214 217
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
| 219 |
218
|
adantr |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( ( ( log ‘ 𝐴 ) + 1 ) − ( log ‘ ( 𝐴 / 𝑇 ) ) ) = ( ( log ‘ 𝑇 ) + 1 ) ) |
| 220 |
208 219
|
breqtrd |
⊢ ( ( 𝜑 ∧ 1 ≤ 𝐴 ) → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 221 |
195 220 57 24
|
ltlecasei |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) − Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( 1 / 𝑛 ) ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 222 |
160 221
|
eqbrtrrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) |
| 223 |
|
lemul2a |
⊢ ( ( ( Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ∈ ℝ ∧ ( ( log ‘ 𝑇 ) + 1 ) ∈ ℝ ∧ ( 𝑅 ∈ ℝ ∧ 0 ≤ 𝑅 ) ) ∧ Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ≤ ( ( log ‘ 𝑇 ) + 1 ) ) → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
| 224 |
113 31 3 222 223
|
syl31anc |
⊢ ( 𝜑 → ( 𝑅 · Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( 1 / 𝑛 ) ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
| 225 |
83 114 32 152 224
|
letrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) |
| 226 |
77 83 20 32 110 225
|
le2addd |
⊢ ( 𝜑 → ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) + Σ 𝑛 ∈ ( ( ( ⌊ ‘ ( 𝐴 / 𝑇 ) ) + 1 ) ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
| 227 |
71 226
|
eqbrtrd |
⊢ ( 𝜑 → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( ( abs ‘ 𝐵 ) / 𝑛 ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |
| 228 |
16 19 33 43 227
|
letrd |
⊢ ( 𝜑 → ( abs ‘ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( 𝐵 / 𝑛 ) ) ≤ ( Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) 𝐶 + ( 𝑅 · ( ( log ‘ 𝑇 ) + 1 ) ) ) ) |