Metamath Proof Explorer


Theorem dchrvmasumlema

Description: Lemma for dchrvmasum and dchrvmasumif . Apply dchrisum for the function log ( y ) / y , which is decreasing above _e (or above 3, the nearest integer bound). (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Hypotheses rpvmasum.z Z = /N
rpvmasum.l L = ℤRHom Z
rpvmasum.a φ N
rpvmasum.g G = DChr N
rpvmasum.d D = Base G
rpvmasum.1 1 ˙ = 0 G
dchrisum.b φ X D
dchrisum.n1 φ X 1 ˙
dchrvmasumlema.f F = a X L a log a a
Assertion dchrvmasumlema φ t c 0 +∞ seq 1 + F t y 3 +∞ seq 1 + F y t c log y y

Proof

Step Hyp Ref Expression
1 rpvmasum.z Z = /N
2 rpvmasum.l L = ℤRHom Z
3 rpvmasum.a φ N
4 rpvmasum.g G = DChr N
5 rpvmasum.d D = Base G
6 rpvmasum.1 1 ˙ = 0 G
7 dchrisum.b φ X D
8 dchrisum.n1 φ X 1 ˙
9 dchrvmasumlema.f F = a X L a log a a
10 fveq2 n = x log n = log x
11 id n = x n = x
12 10 11 oveq12d n = x log n n = log x x
13 3nn 3
14 13 a1i φ 3
15 relogcl n + log n
16 rerpdivcl log n n + log n n
17 15 16 mpancom n + log n n
18 17 adantl φ n + log n n
19 simp3r φ n + x + 3 n n x n x
20 simp2l φ n + x + 3 n n x n +
21 20 rpred φ n + x + 3 n n x n
22 ere e
23 22 a1i φ n + x + 3 n n x e
24 3re 3
25 24 a1i φ n + x + 3 n n x 3
26 egt2lt3 2 < e e < 3
27 26 simpri e < 3
28 22 24 27 ltleii e 3
29 28 a1i φ n + x + 3 n n x e 3
30 simp3l φ n + x + 3 n n x 3 n
31 23 25 21 29 30 letrd φ n + x + 3 n n x e n
32 simp2r φ n + x + 3 n n x x +
33 32 rpred φ n + x + 3 n n x x
34 23 21 33 31 19 letrd φ n + x + 3 n n x e x
35 logdivle n e n x e x n x log x x log n n
36 21 31 33 34 35 syl22anc φ n + x + 3 n n x n x log x x log n n
37 19 36 mpbid φ n + x + 3 n n x log x x log n n
38 rpcn n + n
39 38 cxp1d n + n 1 = n
40 39 oveq2d n + log n n 1 = log n n
41 40 mpteq2ia n + log n n 1 = n + log n n
42 1rp 1 +
43 cxploglim 1 + n + log n n 1 0
44 42 43 mp1i φ n + log n n 1 0
45 41 44 eqbrtrrid φ n + log n n 0
46 2fveq3 a = n X L a = X L n
47 fveq2 a = n log a = log n
48 id a = n a = n
49 47 48 oveq12d a = n log a a = log n n
50 46 49 oveq12d a = n X L a log a a = X L n log n n
51 50 cbvmptv a X L a log a a = n X L n log n n
52 9 51 eqtri F = n X L n log n n
53 1 2 3 4 5 6 7 8 12 14 18 37 45 52 dchrisum φ t c 0 +∞ seq 1 + F t x 3 +∞ seq 1 + F x t c log x x
54 2fveq3 x = y seq 1 + F x = seq 1 + F y
55 54 fvoveq1d x = y seq 1 + F x t = seq 1 + F y t
56 fveq2 x = y log x = log y
57 id x = y x = y
58 56 57 oveq12d x = y log x x = log y y
59 58 oveq2d x = y c log x x = c log y y
60 55 59 breq12d x = y seq 1 + F x t c log x x seq 1 + F y t c log y y
61 60 cbvralvw x 3 +∞ seq 1 + F x t c log x x y 3 +∞ seq 1 + F y t c log y y
62 61 anbi2i seq 1 + F t x 3 +∞ seq 1 + F x t c log x x seq 1 + F t y 3 +∞ seq 1 + F y t c log y y
63 62 rexbii c 0 +∞ seq 1 + F t x 3 +∞ seq 1 + F x t c log x x c 0 +∞ seq 1 + F t y 3 +∞ seq 1 + F y t c log y y
64 63 exbii t c 0 +∞ seq 1 + F t x 3 +∞ seq 1 + F x t c log x x t c 0 +∞ seq 1 + F t y 3 +∞ seq 1 + F y t c log y y
65 53 64 sylib φ t c 0 +∞ seq 1 + F t y 3 +∞ seq 1 + F y t c log y y