| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
| 2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
| 3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
rpvmasum.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
| 5 |
|
rpvmasum.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
| 6 |
|
rpvmasum.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
| 7 |
|
dchrisum.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
| 8 |
|
dchrisum.n1 |
⊢ ( 𝜑 → 𝑋 ≠ 1 ) |
| 9 |
|
dchrvmasumif.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) |
| 10 |
|
dchrvmasumif.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
| 11 |
|
dchrvmasumif.s |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
| 12 |
|
dchrvmasumif.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
| 13 |
|
dchrvmasumif.g |
⊢ 𝐾 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( ( log ‘ 𝑎 ) / 𝑎 ) ) ) |
| 14 |
|
dchrvmasumif.e |
⊢ ( 𝜑 → 𝐸 ∈ ( 0 [,) +∞ ) ) |
| 15 |
|
dchrvmasumif.t |
⊢ ( 𝜑 → seq 1 ( + , 𝐾 ) ⇝ 𝑇 ) |
| 16 |
|
dchrvmasumif.2 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 3 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑦 ) / 𝑦 ) ) ) |
| 17 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ∈ Fin ) |
| 18 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝜑 ) |
| 19 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
| 20 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
| 21 |
|
nnz |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℤ ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℤ ) |
| 23 |
4 1 5 2 20 22
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 24 |
18 19 23
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ+ ) |
| 26 |
19
|
nnrpd |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) → 𝑘 ∈ ℝ+ ) |
| 27 |
|
ifcl |
⊢ ( ( 𝑚 ∈ ℝ+ ∧ 𝑘 ∈ ℝ+ ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ+ ) |
| 28 |
25 26 27
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ+ ) |
| 29 |
28
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ∈ ℝ ) |
| 30 |
19
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → 𝑘 ∈ ℕ ) |
| 31 |
29 30
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ∈ ℝ ) |
| 32 |
31
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ∈ ℂ ) |
| 33 |
24 32
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 34 |
17 33
|
fsumcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 35 |
|
fveq2 |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ⌊ ‘ 𝑚 ) = ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) = ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) |
| 37 |
|
ifeq1 |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) = if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) = ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) ) |
| 39 |
38
|
oveq1d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) = ( ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) / 𝑘 ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) / 𝑘 ) ) ) |
| 41 |
40
|
adantr |
⊢ ( ( 𝑚 = ( 𝑥 / 𝑑 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) / 𝑘 ) ) ) |
| 42 |
36 41
|
sumeq12rdv |
⊢ ( 𝑚 = ( 𝑥 / 𝑑 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) / 𝑘 ) ) ) |
| 43 |
10 14
|
ifcld |
⊢ ( 𝜑 → if ( 𝑆 = 0 , 𝐶 , 𝐸 ) ∈ ( 0 [,) +∞ ) ) |
| 44 |
|
0cn |
⊢ 0 ∈ ℂ |
| 45 |
|
climcl |
⊢ ( seq 1 ( + , 𝐾 ) ⇝ 𝑇 → 𝑇 ∈ ℂ ) |
| 46 |
15 45
|
syl |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
| 47 |
|
ifcl |
⊢ ( ( 0 ∈ ℂ ∧ 𝑇 ∈ ℂ ) → if ( 𝑆 = 0 , 0 , 𝑇 ) ∈ ℂ ) |
| 48 |
44 46 47
|
sylancr |
⊢ ( 𝜑 → if ( 𝑆 = 0 , 0 , 𝑇 ) ∈ ℂ ) |
| 49 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 50 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
| 51 |
|
nncn |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) |
| 52 |
51
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℂ ) |
| 53 |
|
nnne0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ≠ 0 ) |
| 54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ≠ 0 ) |
| 55 |
23 52 54
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ∈ ℂ ) |
| 56 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑘 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) |
| 57 |
|
id |
⊢ ( 𝑎 = 𝑘 → 𝑎 = 𝑘 ) |
| 58 |
56 57
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 59 |
58
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / 𝑎 ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 60 |
9 59
|
eqtri |
⊢ 𝐹 = ( 𝑘 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 61 |
55 60
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
| 62 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 63 |
61 62
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 64 |
49 50 63
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 66 |
|
3re |
⊢ 3 ∈ ℝ |
| 67 |
|
elicopnf |
⊢ ( 3 ∈ ℝ → ( 𝑚 ∈ ( 3 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 3 ≤ 𝑚 ) ) ) |
| 68 |
66 67
|
mp1i |
⊢ ( 𝜑 → ( 𝑚 ∈ ( 3 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 3 ≤ 𝑚 ) ) ) |
| 69 |
68
|
simprbda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 𝑚 ∈ ℝ ) |
| 70 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 1 ∈ ℝ ) |
| 71 |
66
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 3 ∈ ℝ ) |
| 72 |
|
1le3 |
⊢ 1 ≤ 3 |
| 73 |
72
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 1 ≤ 3 ) |
| 74 |
68
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 3 ≤ 𝑚 ) |
| 75 |
70 71 69 73 74
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 1 ≤ 𝑚 ) |
| 76 |
|
flge1nn |
⊢ ( ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 77 |
69 75 76
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 78 |
77
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ⌊ ‘ 𝑚 ) ∈ ℕ ) |
| 79 |
65 78
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
| 80 |
79
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ∈ ℝ ) |
| 81 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 𝜑 ) |
| 82 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 0 ∈ ℝ ) |
| 83 |
|
3pos |
⊢ 0 < 3 |
| 84 |
83
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 0 < 3 ) |
| 85 |
82 71 69 84 74
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 0 < 𝑚 ) |
| 86 |
69 85
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 𝑚 ∈ ℝ+ ) |
| 87 |
81 86
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ) |
| 88 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
| 89 |
88
|
simplbi |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) → 𝐶 ∈ ℝ ) |
| 90 |
10 89
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 91 |
|
rerpdivcl |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑚 ∈ ℝ+ ) → ( 𝐶 / 𝑚 ) ∈ ℝ ) |
| 92 |
90 91
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( 𝐶 / 𝑚 ) ∈ ℝ ) |
| 93 |
87 92
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( 𝐶 / 𝑚 ) ∈ ℝ ) |
| 94 |
93
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( 𝐶 / 𝑚 ) ∈ ℝ ) |
| 95 |
86
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 96 |
69 75
|
logge0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 0 ≤ ( log ‘ 𝑚 ) ) |
| 97 |
95 96
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( ( log ‘ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( log ‘ 𝑚 ) ) ) |
| 98 |
97
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ( log ‘ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( log ‘ 𝑚 ) ) ) |
| 99 |
|
oveq2 |
⊢ ( 𝑆 = 0 → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 0 ) ) |
| 100 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
| 101 |
100 77
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ∈ ℂ ) |
| 102 |
101
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 0 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 103 |
99 102
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 104 |
103
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) ) = ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) |
| 105 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑚 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 106 |
105
|
fvoveq1d |
⊢ ( 𝑦 = 𝑚 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) ) ) |
| 107 |
|
oveq2 |
⊢ ( 𝑦 = 𝑚 → ( 𝐶 / 𝑦 ) = ( 𝐶 / 𝑚 ) ) |
| 108 |
106 107
|
breq12d |
⊢ ( 𝑦 = 𝑚 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑚 ) ) ) |
| 109 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑦 ) ) |
| 110 |
|
1re |
⊢ 1 ∈ ℝ |
| 111 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑚 ∈ ( 1 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ) ) ) |
| 112 |
110 111
|
ax-mp |
⊢ ( 𝑚 ∈ ( 1 [,) +∞ ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ) ) |
| 113 |
69 75 112
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → 𝑚 ∈ ( 1 [,) +∞ ) ) |
| 114 |
108 109 113
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑚 ) ) |
| 115 |
114
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑆 ) ) ≤ ( 𝐶 / 𝑚 ) ) |
| 116 |
104 115
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ≤ ( 𝐶 / 𝑚 ) ) |
| 117 |
|
lemul2a |
⊢ ( ( ( ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ∈ ℝ ∧ ( 𝐶 / 𝑚 ) ∈ ℝ ∧ ( ( log ‘ 𝑚 ) ∈ ℝ ∧ 0 ≤ ( log ‘ 𝑚 ) ) ) ∧ ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ≤ ( 𝐶 / 𝑚 ) ) → ( ( log ‘ 𝑚 ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ≤ ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 118 |
80 94 98 116 117
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ( log ‘ 𝑚 ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ≤ ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 119 |
|
iftrue |
⊢ ( 𝑆 = 0 → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) = 𝑚 ) |
| 120 |
119
|
fveq2d |
⊢ ( 𝑆 = 0 → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) = ( log ‘ 𝑚 ) ) |
| 121 |
120
|
oveq1d |
⊢ ( 𝑆 = 0 → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) = ( ( log ‘ 𝑚 ) / 𝑘 ) ) |
| 122 |
121
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) = ( ( log ‘ 𝑚 ) / 𝑘 ) ) |
| 123 |
122
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑚 ) / 𝑘 ) ) ) |
| 124 |
24
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 125 |
|
relogcl |
⊢ ( 𝑚 ∈ ℝ+ → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 126 |
125
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 127 |
126
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 128 |
127
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 129 |
19
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → 𝑘 ∈ ℕ ) |
| 130 |
129
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → 𝑘 ∈ ℂ ) |
| 131 |
129
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → 𝑘 ≠ 0 ) |
| 132 |
124 128 130 131
|
div12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑚 ) / 𝑘 ) ) = ( ( log ‘ 𝑚 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 133 |
123 132
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( log ‘ 𝑚 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 134 |
133
|
sumeq2dv |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( log ‘ 𝑚 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 135 |
|
iftrue |
⊢ ( 𝑆 = 0 → if ( 𝑆 = 0 , 0 , 𝑇 ) = 0 ) |
| 136 |
135
|
oveq2d |
⊢ ( 𝑆 = 0 → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − 0 ) ) |
| 137 |
34
|
subid1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − 0 ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) |
| 138 |
136 137
|
sylan9eqr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) |
| 139 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ∈ V |
| 140 |
58 9 139
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 141 |
30 140
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 142 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝐹 : ℕ ⟶ ℂ ) |
| 143 |
142 19 62
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 144 |
141 143
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ∈ ℂ ) |
| 145 |
17 127 144
|
fsummulc2 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( ( log ‘ 𝑚 ) · Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( log ‘ 𝑚 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 146 |
145
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( ( log ‘ 𝑚 ) · Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) = Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( log ‘ 𝑚 ) · ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 147 |
134 138 146
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = ( ( log ‘ 𝑚 ) · Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 148 |
87 147
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = ( ( log ‘ 𝑚 ) · Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) ) |
| 149 |
87 141
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝐹 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) |
| 150 |
77 49
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( ⌊ ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 151 |
81 19 55
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ∈ ℂ ) |
| 152 |
149 150 151
|
fsumser |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 153 |
152
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 154 |
153
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ( log ‘ 𝑚 ) · Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) / 𝑘 ) ) = ( ( log ‘ 𝑚 ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) |
| 155 |
148 154
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = ( ( log ‘ 𝑚 ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) |
| 156 |
155
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) = ( abs ‘ ( ( log ‘ 𝑚 ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 157 |
125
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( log ‘ 𝑚 ) ∈ ℝ ) |
| 158 |
157
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 159 |
87 158
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( log ‘ 𝑚 ) ∈ ℂ ) |
| 160 |
159 79
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( ( log ‘ 𝑚 ) · ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) = ( ( abs ‘ ( log ‘ 𝑚 ) ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 161 |
95 96
|
absidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( log ‘ 𝑚 ) ) = ( log ‘ 𝑚 ) ) |
| 162 |
161
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( ( abs ‘ ( log ‘ 𝑚 ) ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) = ( ( log ‘ 𝑚 ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 163 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( ( abs ‘ ( log ‘ 𝑚 ) ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) = ( ( log ‘ 𝑚 ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 164 |
156 160 163
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) = ( ( log ‘ 𝑚 ) · ( abs ‘ ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) ) ) |
| 165 |
|
iftrue |
⊢ ( 𝑆 = 0 → if ( 𝑆 = 0 , 𝐶 , 𝐸 ) = 𝐶 ) |
| 166 |
165
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → if ( 𝑆 = 0 , 𝐶 , 𝐸 ) = 𝐶 ) |
| 167 |
166
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 168 |
90
|
recnd |
⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 169 |
168
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → 𝐶 ∈ ℂ ) |
| 170 |
|
rpcnne0 |
⊢ ( 𝑚 ∈ ℝ+ → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 171 |
170
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) |
| 172 |
|
div12 |
⊢ ( ( 𝐶 ∈ ℂ ∧ ( log ‘ 𝑚 ) ∈ ℂ ∧ ( 𝑚 ∈ ℂ ∧ 𝑚 ≠ 0 ) ) → ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 173 |
169 158 171 172
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( 𝐶 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 174 |
167 173
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑆 = 0 ) → ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 175 |
87 174
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( ( log ‘ 𝑚 ) · ( 𝐶 / 𝑚 ) ) ) |
| 176 |
118 164 175
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 = 0 ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 177 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑚 → ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 178 |
177
|
fvoveq1d |
⊢ ( 𝑦 = 𝑚 → ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ) |
| 179 |
|
fveq2 |
⊢ ( 𝑦 = 𝑚 → ( log ‘ 𝑦 ) = ( log ‘ 𝑚 ) ) |
| 180 |
|
id |
⊢ ( 𝑦 = 𝑚 → 𝑦 = 𝑚 ) |
| 181 |
179 180
|
oveq12d |
⊢ ( 𝑦 = 𝑚 → ( ( log ‘ 𝑦 ) / 𝑦 ) = ( ( log ‘ 𝑚 ) / 𝑚 ) ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝑦 = 𝑚 → ( 𝐸 · ( ( log ‘ 𝑦 ) / 𝑦 ) ) = ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 183 |
178 182
|
breq12d |
⊢ ( 𝑦 = 𝑚 → ( ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑦 ) / 𝑦 ) ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) ) |
| 184 |
183
|
rspccva |
⊢ ( ( ∀ 𝑦 ∈ ( 3 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑦 ) / 𝑦 ) ) ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 185 |
16 184
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 186 |
185
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ≤ ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 187 |
|
fveq2 |
⊢ ( 𝑎 = 𝑘 → ( log ‘ 𝑎 ) = ( log ‘ 𝑘 ) ) |
| 188 |
187 57
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( log ‘ 𝑎 ) / 𝑎 ) = ( ( log ‘ 𝑘 ) / 𝑘 ) ) |
| 189 |
56 188
|
oveq12d |
⊢ ( 𝑎 = 𝑘 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( ( log ‘ 𝑎 ) / 𝑎 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 190 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ∈ V |
| 191 |
189 13 190
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐾 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 192 |
19 191
|
syl |
⊢ ( 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) → ( 𝐾 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 193 |
|
ifnefalse |
⊢ ( 𝑆 ≠ 0 → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) = 𝑘 ) |
| 194 |
193
|
fveq2d |
⊢ ( 𝑆 ≠ 0 → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) = ( log ‘ 𝑘 ) ) |
| 195 |
194
|
oveq1d |
⊢ ( 𝑆 ≠ 0 → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) = ( ( log ‘ 𝑘 ) / 𝑘 ) ) |
| 196 |
195
|
oveq2d |
⊢ ( 𝑆 ≠ 0 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 197 |
196
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 198 |
197
|
eqcomd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) |
| 199 |
192 198
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝐾 ‘ 𝑘 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) |
| 200 |
150
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( ⌊ ‘ 𝑚 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 201 |
|
nnrp |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℝ+ ) |
| 202 |
201
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ ℝ+ ) |
| 203 |
202
|
relogcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑘 ) ∈ ℝ ) |
| 204 |
203
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( log ‘ 𝑘 ) ∈ ℂ ) |
| 205 |
204 52 54
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 𝑘 ) / 𝑘 ) ∈ ℂ ) |
| 206 |
23 205
|
mulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ∈ ℂ ) |
| 207 |
189
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) · ( ( log ‘ 𝑎 ) / 𝑎 ) ) ) = ( 𝑘 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 208 |
13 207
|
eqtri |
⊢ 𝐾 = ( 𝑘 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ 𝑘 ) / 𝑘 ) ) ) |
| 209 |
206 208
|
fmptd |
⊢ ( 𝜑 → 𝐾 : ℕ ⟶ ℂ ) |
| 210 |
209
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → 𝐾 : ℕ ⟶ ℂ ) |
| 211 |
|
ffvelcdm |
⊢ ( ( 𝐾 : ℕ ⟶ ℂ ∧ 𝑘 ∈ ℕ ) → ( 𝐾 ‘ 𝑘 ) ∈ ℂ ) |
| 212 |
210 19 211
|
syl2an |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( 𝐾 ‘ 𝑘 ) ∈ ℂ ) |
| 213 |
199 212
|
eqeltrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 214 |
199 200 213
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 215 |
|
ifnefalse |
⊢ ( 𝑆 ≠ 0 → if ( 𝑆 = 0 , 0 , 𝑇 ) = 𝑇 ) |
| 216 |
215
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → if ( 𝑆 = 0 , 0 , 𝑇 ) = 𝑇 ) |
| 217 |
214 216
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) = ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) |
| 218 |
217
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐾 ) ‘ ( ⌊ ‘ 𝑚 ) ) − 𝑇 ) ) ) |
| 219 |
|
ifnefalse |
⊢ ( 𝑆 ≠ 0 → if ( 𝑆 = 0 , 𝐶 , 𝐸 ) = 𝐸 ) |
| 220 |
219
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → if ( 𝑆 = 0 , 𝐶 , 𝐸 ) = 𝐸 ) |
| 221 |
220
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) = ( 𝐸 · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 222 |
186 218 221
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) ∧ 𝑆 ≠ 0 ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 223 |
176 222
|
pm2.61dane |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 3 [,) +∞ ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( if ( 𝑆 = 0 , 𝐶 , 𝐸 ) · ( ( log ‘ 𝑚 ) / 𝑚 ) ) ) |
| 224 |
|
fzfid |
⊢ ( 𝜑 → ( 1 ... 2 ) ∈ Fin ) |
| 225 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑋 ∈ 𝐷 ) |
| 226 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 2 ) → 𝑘 ∈ ℤ ) |
| 227 |
226
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℤ ) |
| 228 |
4 1 5 2 225 227
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 229 |
228
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 230 |
|
3rp |
⊢ 3 ∈ ℝ+ |
| 231 |
|
relogcl |
⊢ ( 3 ∈ ℝ+ → ( log ‘ 3 ) ∈ ℝ ) |
| 232 |
230 231
|
ax-mp |
⊢ ( log ‘ 3 ) ∈ ℝ |
| 233 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 2 ) → 𝑘 ∈ ℕ ) |
| 234 |
233
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℕ ) |
| 235 |
|
nndivre |
⊢ ( ( ( log ‘ 3 ) ∈ ℝ ∧ 𝑘 ∈ ℕ ) → ( ( log ‘ 3 ) / 𝑘 ) ∈ ℝ ) |
| 236 |
232 234 235
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ 3 ) / 𝑘 ) ∈ ℝ ) |
| 237 |
229 236
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ∈ ℝ ) |
| 238 |
224 237
|
fsumrecl |
⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ∈ ℝ ) |
| 239 |
48
|
abscld |
⊢ ( 𝜑 → ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ∈ ℝ ) |
| 240 |
238 239
|
readdcld |
⊢ ( 𝜑 → ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ∈ ℝ ) |
| 241 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 𝜑 ) |
| 242 |
66
|
rexri |
⊢ 3 ∈ ℝ* |
| 243 |
|
elico2 |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ* ) → ( 𝑚 ∈ ( 1 [,) 3 ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3 ) ) ) |
| 244 |
110 242 243
|
mp2an |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) ↔ ( 𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3 ) ) |
| 245 |
244
|
simp1bi |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 𝑚 ∈ ℝ ) |
| 246 |
245
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 𝑚 ∈ ℝ ) |
| 247 |
|
0red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 ∈ ℝ ) |
| 248 |
|
1red |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 1 ∈ ℝ ) |
| 249 |
|
0lt1 |
⊢ 0 < 1 |
| 250 |
249
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 < 1 ) |
| 251 |
244
|
simp2bi |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 1 ≤ 𝑚 ) |
| 252 |
251
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 1 ≤ 𝑚 ) |
| 253 |
247 248 246 250 252
|
ltletrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 0 < 𝑚 ) |
| 254 |
246 253
|
elrpd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 𝑚 ∈ ℝ+ ) |
| 255 |
241 254
|
jca |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ) |
| 256 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → if ( 𝑆 = 0 , 0 , 𝑇 ) ∈ ℂ ) |
| 257 |
34 256
|
subcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ∈ ℂ ) |
| 258 |
255 257
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ∈ ℂ ) |
| 259 |
258
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ∈ ℝ ) |
| 260 |
255 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 261 |
260
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 262 |
239
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ∈ ℝ ) |
| 263 |
261 262
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ∈ ℝ ) |
| 264 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ∈ ℝ ) |
| 265 |
264 262
|
readdcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ∈ ℝ ) |
| 266 |
34 256
|
abs2dif2d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) |
| 267 |
255 266
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) |
| 268 |
33
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 269 |
17 268
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 270 |
255 269
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 271 |
17 33
|
fsumabs |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 272 |
255 271
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 273 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( 1 ... 2 ) ∈ Fin ) |
| 274 |
228
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ∈ ℂ ) |
| 275 |
25
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑚 ∈ ℝ+ ) |
| 276 |
233
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℕ ) |
| 277 |
276
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℝ+ ) |
| 278 |
275 277
|
ifcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ+ ) |
| 279 |
278
|
relogcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ∈ ℝ ) |
| 280 |
279 276
|
nndivred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ∈ ℝ ) |
| 281 |
280
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ∈ ℂ ) |
| 282 |
274 281
|
mulcld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 283 |
282
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 284 |
273 283
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... 2 ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 285 |
255 284
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... 2 ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 286 |
|
fzfid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( 1 ... 2 ) ∈ Fin ) |
| 287 |
255 282
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℂ ) |
| 288 |
287
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 289 |
287
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 0 ≤ ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 290 |
246
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ⌊ ‘ 𝑚 ) ∈ ℤ ) |
| 291 |
|
2z |
⊢ 2 ∈ ℤ |
| 292 |
291
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 2 ∈ ℤ ) |
| 293 |
244
|
simp3bi |
⊢ ( 𝑚 ∈ ( 1 [,) 3 ) → 𝑚 < 3 ) |
| 294 |
293
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 𝑚 < 3 ) |
| 295 |
|
3z |
⊢ 3 ∈ ℤ |
| 296 |
|
fllt |
⊢ ( ( 𝑚 ∈ ℝ ∧ 3 ∈ ℤ ) → ( 𝑚 < 3 ↔ ( ⌊ ‘ 𝑚 ) < 3 ) ) |
| 297 |
246 295 296
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( 𝑚 < 3 ↔ ( ⌊ ‘ 𝑚 ) < 3 ) ) |
| 298 |
294 297
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ⌊ ‘ 𝑚 ) < 3 ) |
| 299 |
|
df-3 |
⊢ 3 = ( 2 + 1 ) |
| 300 |
298 299
|
breqtrdi |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ⌊ ‘ 𝑚 ) < ( 2 + 1 ) ) |
| 301 |
|
rpre |
⊢ ( 𝑚 ∈ ℝ+ → 𝑚 ∈ ℝ ) |
| 302 |
301
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → 𝑚 ∈ ℝ ) |
| 303 |
302
|
flcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( ⌊ ‘ 𝑚 ) ∈ ℤ ) |
| 304 |
|
zleltp1 |
⊢ ( ( ( ⌊ ‘ 𝑚 ) ∈ ℤ ∧ 2 ∈ ℤ ) → ( ( ⌊ ‘ 𝑚 ) ≤ 2 ↔ ( ⌊ ‘ 𝑚 ) < ( 2 + 1 ) ) ) |
| 305 |
303 291 304
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑚 ) ≤ 2 ↔ ( ⌊ ‘ 𝑚 ) < ( 2 + 1 ) ) ) |
| 306 |
255 305
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ( ⌊ ‘ 𝑚 ) ≤ 2 ↔ ( ⌊ ‘ 𝑚 ) < ( 2 + 1 ) ) ) |
| 307 |
300 306
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ⌊ ‘ 𝑚 ) ≤ 2 ) |
| 308 |
|
eluz2 |
⊢ ( 2 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ↔ ( ( ⌊ ‘ 𝑚 ) ∈ ℤ ∧ 2 ∈ ℤ ∧ ( ⌊ ‘ 𝑚 ) ≤ 2 ) ) |
| 309 |
290 292 307 308
|
syl3anbrc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → 2 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) ) |
| 310 |
|
fzss2 |
⊢ ( 2 ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑚 ) ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ⊆ ( 1 ... 2 ) ) |
| 311 |
309 310
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( 1 ... ( ⌊ ‘ 𝑚 ) ) ⊆ ( 1 ... 2 ) ) |
| 312 |
286 288 289 311
|
fsumless |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 313 |
237
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ∈ ℝ ) |
| 314 |
274 281
|
absmuld |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 315 |
255 314
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) = ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ) |
| 316 |
255 280
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ∈ ℝ ) |
| 317 |
255 279
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ∈ ℝ ) |
| 318 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
| 319 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( 1 ... 2 ) → 1 ≤ 𝑘 ) |
| 320 |
|
breq2 |
⊢ ( 𝑚 = if ( 𝑆 = 0 , 𝑚 , 𝑘 ) → ( 1 ≤ 𝑚 ↔ 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) |
| 321 |
|
breq2 |
⊢ ( 𝑘 = if ( 𝑆 = 0 , 𝑚 , 𝑘 ) → ( 1 ≤ 𝑘 ↔ 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) |
| 322 |
320 321
|
ifboth |
⊢ ( ( 1 ≤ 𝑚 ∧ 1 ≤ 𝑘 ) → 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) |
| 323 |
252 319 322
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) |
| 324 |
|
1rp |
⊢ 1 ∈ ℝ+ |
| 325 |
|
logleb |
⊢ ( ( 1 ∈ ℝ+ ∧ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ+ ) → ( 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) ) |
| 326 |
324 278 325
|
sylancr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) ) |
| 327 |
255 326
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 1 ≤ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ↔ ( log ‘ 1 ) ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) ) |
| 328 |
323 327
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( log ‘ 1 ) ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) |
| 329 |
318 328
|
eqbrtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 0 ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) |
| 330 |
277
|
rpregt0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 331 |
255 330
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) |
| 332 |
|
divge0 |
⊢ ( ( ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ∈ ℝ ∧ 0 ≤ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ) ∧ ( 𝑘 ∈ ℝ ∧ 0 < 𝑘 ) ) → 0 ≤ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) |
| 333 |
317 329 331 332
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 0 ≤ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) |
| 334 |
316 333
|
absidd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) = ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) |
| 335 |
334 316
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℝ ) |
| 336 |
236
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ 3 ) / 𝑘 ) ∈ ℝ ) |
| 337 |
229
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ∈ ℝ ) |
| 338 |
274
|
absge0d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) |
| 339 |
337 338
|
jca |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) ) |
| 340 |
255 339
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) ) |
| 341 |
293
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑚 < 3 ) |
| 342 |
276
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ∈ ℝ ) |
| 343 |
|
2re |
⊢ 2 ∈ ℝ |
| 344 |
343
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 2 ∈ ℝ ) |
| 345 |
66
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 3 ∈ ℝ ) |
| 346 |
|
elfzle2 |
⊢ ( 𝑘 ∈ ( 1 ... 2 ) → 𝑘 ≤ 2 ) |
| 347 |
346
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 ≤ 2 ) |
| 348 |
|
2lt3 |
⊢ 2 < 3 |
| 349 |
348
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 2 < 3 ) |
| 350 |
342 344 345 347 349
|
lelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 < 3 ) |
| 351 |
255 350
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → 𝑘 < 3 ) |
| 352 |
|
breq1 |
⊢ ( 𝑚 = if ( 𝑆 = 0 , 𝑚 , 𝑘 ) → ( 𝑚 < 3 ↔ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 ) ) |
| 353 |
|
breq1 |
⊢ ( 𝑘 = if ( 𝑆 = 0 , 𝑚 , 𝑘 ) → ( 𝑘 < 3 ↔ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 ) ) |
| 354 |
352 353
|
ifboth |
⊢ ( ( 𝑚 < 3 ∧ 𝑘 < 3 ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 ) |
| 355 |
341 351 354
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 ) |
| 356 |
278
|
rpred |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ ) |
| 357 |
|
ltle |
⊢ ( ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ ∧ 3 ∈ ℝ ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ) ) |
| 358 |
356 66 357
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ) ) |
| 359 |
255 358
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) < 3 → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ) ) |
| 360 |
355 359
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ) |
| 361 |
|
logleb |
⊢ ( ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ↔ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ) ) |
| 362 |
278 230 361
|
sylancl |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ↔ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ) ) |
| 363 |
255 362
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ≤ 3 ↔ ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ) ) |
| 364 |
360 363
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ) |
| 365 |
232
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( log ‘ 3 ) ∈ ℝ ) |
| 366 |
279 365 277
|
lediv1d |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ↔ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ≤ ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 367 |
255 366
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) ≤ ( log ‘ 3 ) ↔ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ≤ ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 368 |
364 367
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ≤ ( ( log ‘ 3 ) / 𝑘 ) ) |
| 369 |
334 368
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ≤ ( ( log ‘ 3 ) / 𝑘 ) ) |
| 370 |
|
lemul2a |
⊢ ( ( ( ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ∈ ℝ ∧ ( ( log ‘ 3 ) / 𝑘 ) ∈ ℝ ∧ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ∈ ℝ ∧ 0 ≤ ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) ) ) ∧ ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ≤ ( ( log ‘ 3 ) / 𝑘 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 371 |
335 336 340 369 370
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( abs ‘ ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 372 |
315 371
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) ∧ 𝑘 ∈ ( 1 ... 2 ) ) → ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 373 |
286 288 313 372
|
fsumle |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... 2 ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 374 |
270 285 264 312 373
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( abs ‘ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 375 |
261 270 264 272 374
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ) |
| 376 |
34
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ∈ ℝ ) |
| 377 |
238
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ∈ ℝ ) |
| 378 |
256
|
abscld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ∈ ℝ ) |
| 379 |
376 377 378
|
leadd1d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ+ ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ↔ ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) ) |
| 380 |
255 379
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) ≤ Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) ↔ ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) ) |
| 381 |
375 380
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( ( abs ‘ Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) |
| 382 |
259 263 265 267 381
|
letrd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 1 [,) 3 ) ) → ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) |
| 383 |
382
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ( 1 [,) 3 ) ( abs ‘ ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ 𝑚 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , 𝑚 , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ≤ ( Σ 𝑘 ∈ ( 1 ... 2 ) ( ( abs ‘ ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) ) · ( ( log ‘ 3 ) / 𝑘 ) ) + ( abs ‘ if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) |
| 384 |
1 2 3 4 5 6 7 8 34 42 43 48 223 240 383
|
dchrvmasumlem3 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ+ ↦ Σ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑑 ) ) · ( ( μ ‘ 𝑑 ) / 𝑑 ) ) · ( Σ 𝑘 ∈ ( 1 ... ( ⌊ ‘ ( 𝑥 / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑘 ) ) · ( ( log ‘ if ( 𝑆 = 0 , ( 𝑥 / 𝑑 ) , 𝑘 ) ) / 𝑘 ) ) − if ( 𝑆 = 0 , 0 , 𝑇 ) ) ) ) ∈ 𝑂(1) ) |