Metamath Proof Explorer


Theorem dchrzrhcl

Description: A Dirichlet character takes values in the complex numbers. (Contributed by Mario Carneiro, 12-May-2016)

Ref Expression
Hypotheses dchrmhm.g G=DChrN
dchrmhm.z Z=/N
dchrmhm.b D=BaseG
dchrelbas4.l L=ℤRHomZ
dchrzrh1.x φXD
dchrzrh1.a φA
Assertion dchrzrhcl φXLA

Proof

Step Hyp Ref Expression
1 dchrmhm.g G=DChrN
2 dchrmhm.z Z=/N
3 dchrmhm.b D=BaseG
4 dchrelbas4.l L=ℤRHomZ
5 dchrzrh1.x φXD
6 dchrzrh1.a φA
7 eqid BaseZ=BaseZ
8 1 2 3 7 5 dchrf φX:BaseZ
9 1 3 dchrrcl XDN
10 nnnn0 NN0
11 5 9 10 3syl φN0
12 2 7 4 znzrhfo N0L:ontoBaseZ
13 fof L:ontoBaseZL:BaseZ
14 11 12 13 3syl φL:BaseZ
15 14 6 ffvelcdmd φLABaseZ
16 8 15 ffvelcdmd φXLA