Metamath Proof Explorer


Theorem decsplit

Description: Split a decimal number into two parts. Inductive step. (Contributed by Mario Carneiro, 16-Jul-2015) (Revised by AV, 8-Sep-2021)

Ref Expression
Hypotheses decsplit0.1 A0
decsplit.2 B0
decsplit.3 D0
decsplit.4 M0
decsplit.5 M+1=N
decsplit.6 A10M+B=C
Assertion decsplit Could not format assertion : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D with typecode |-

Proof

Step Hyp Ref Expression
1 decsplit0.1 A0
2 decsplit.2 B0
3 decsplit.3 D0
4 decsplit.4 M0
5 decsplit.5 M+1=N
6 decsplit.6 A10M+B=C
7 10nn0 100
8 7 4 nn0expcli 10M0
9 1 8 nn0mulcli A10M0
10 7 9 nn0mulcli 10A10M0
11 10 nn0cni 10A10M
12 7 2 nn0mulcli 10B0
13 12 nn0cni 10B
14 3 nn0cni D
15 11 13 14 addassi 10A10M+10B+D=10A10M+10B+D
16 7 nn0cni 10
17 9 nn0cni A10M
18 2 nn0cni B
19 16 17 18 adddii 10A10M+B=10A10M+10B
20 6 oveq2i 10A10M+B=10C
21 19 20 eqtr3i 10A10M+10B=10C
22 21 oveq1i 10A10M+10B+D=10C+D
23 15 22 eqtr3i 10A10M+10B+D=10C+D
24 8 nn0cni 10M
25 24 16 mulcomi 10M10=1010M
26 7 4 5 25 numexpp1 10N=1010M
27 26 oveq2i A10N=A1010M
28 1 nn0cni A
29 28 16 24 mul12i A1010M=10A10M
30 27 29 eqtri A10N=10A10M
31 dfdec10 Could not format ; B D = ( ( ; 1 0 x. B ) + D ) : No typesetting found for |- ; B D = ( ( ; 1 0 x. B ) + D ) with typecode |-
32 30 31 oveq12i Could not format ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ( ( ; 1 0 x. ( A x. ( ; 1 0 ^ M ) ) ) + ( ( ; 1 0 x. B ) + D ) ) with typecode |-
33 dfdec10 Could not format ; C D = ( ( ; 1 0 x. C ) + D ) : No typesetting found for |- ; C D = ( ( ; 1 0 x. C ) + D ) with typecode |-
34 23 32 33 3eqtr4i Could not format ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D : No typesetting found for |- ( ( A x. ( ; 1 0 ^ N ) ) + ; B D ) = ; C D with typecode |-