Metamath Proof Explorer


Theorem dedths

Description: A version of weak deduction theorem dedth using explicit substitution. (Contributed by NM, 15-Jun-2019)

Ref Expression
Hypothesis dedths.1 [˙ifφxB/x]˙ψ
Assertion dedths φψ

Proof

Step Hyp Ref Expression
1 dedths.1 [˙ifφxB/x]˙ψ
2 dfsbcq x=if[˙x/x]˙φxB[˙x/x]˙ψ[˙if[˙x/x]˙φxB/x]˙ψ
3 sbcid [˙x/x]˙φφ
4 ifbi [˙x/x]˙φφif[˙x/x]˙φxB=ifφxB
5 dfsbcq if[˙x/x]˙φxB=ifφxB[˙if[˙x/x]˙φxB/x]˙ψ[˙ifφxB/x]˙ψ
6 3 4 5 mp2b [˙if[˙x/x]˙φxB/x]˙ψ[˙ifφxB/x]˙ψ
7 1 6 mpbir [˙if[˙x/x]˙φxB/x]˙ψ
8 2 7 dedth [˙x/x]˙φ[˙x/x]˙ψ
9 sbcid [˙x/x]˙ψψ
10 8 3 9 3imtr3i φψ