Metamath Proof Explorer


Theorem deg1cl

Description: Sharp closure of univariate polynomial degree. (Contributed by Stefan O'Rear, 23-Mar-2015)

Ref Expression
Hypotheses deg1xrf.d D=deg1R
deg1xrf.p P=Poly1R
deg1xrf.b B=BaseP
Assertion deg1cl FBDF0−∞

Proof

Step Hyp Ref Expression
1 deg1xrf.d D=deg1R
2 deg1xrf.p P=Poly1R
3 deg1xrf.b B=BaseP
4 1 deg1fval D=1𝑜mDegR
5 eqid 1𝑜mPolyR=1𝑜mPolyR
6 eqid PwSer1R=PwSer1R
7 2 6 3 ply1bas B=Base1𝑜mPolyR
8 4 5 7 mdegcl FBDF0−∞