Metamath Proof Explorer


Theorem mdegpropd

Description: Property deduction for polynomial degree. (Contributed by Stefan O'Rear, 28-Mar-2015) (Proof shortened by AV, 27-Jul-2019)

Ref Expression
Hypotheses mdegpropd.b1 φB=BaseR
mdegpropd.b2 φB=BaseS
mdegpropd.p φxByBx+Ry=x+Sy
Assertion mdegpropd φImDegR=ImDegS

Proof

Step Hyp Ref Expression
1 mdegpropd.b1 φB=BaseR
2 mdegpropd.b2 φB=BaseS
3 mdegpropd.p φxByBx+Ry=x+Sy
4 1 2 3 mplbaspropd φBaseImPolyR=BaseImPolyS
5 1 2 3 grpidpropd φ0R=0S
6 5 oveq2d φcsupp0R=csupp0S
7 6 imaeq2d φba0I|a-1Finfldbcsupp0R=ba0I|a-1Finfldbcsupp0S
8 7 supeq1d φsupba0I|a-1Finfldbcsupp0R*<=supba0I|a-1Finfldbcsupp0S*<
9 4 8 mpteq12dv φcBaseImPolyRsupba0I|a-1Finfldbcsupp0R*<=cBaseImPolySsupba0I|a-1Finfldbcsupp0S*<
10 eqid ImDegR=ImDegR
11 eqid ImPolyR=ImPolyR
12 eqid BaseImPolyR=BaseImPolyR
13 eqid 0R=0R
14 eqid a0I|a-1Fin=a0I|a-1Fin
15 eqid ba0I|a-1Finfldb=ba0I|a-1Finfldb
16 10 11 12 13 14 15 mdegfval ImDegR=cBaseImPolyRsupba0I|a-1Finfldbcsupp0R*<
17 eqid ImDegS=ImDegS
18 eqid ImPolyS=ImPolyS
19 eqid BaseImPolyS=BaseImPolyS
20 eqid 0S=0S
21 17 18 19 20 14 15 mdegfval ImDegS=cBaseImPolySsupba0I|a-1Finfldbcsupp0S*<
22 9 16 21 3eqtr4g φImDegR=ImDegS