Metamath Proof Explorer


Theorem deg1fvi

Description: Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion deg1fvi deg1R=deg1IR

Proof

Step Hyp Ref Expression
1 fvi RVIR=R
2 1 fveq2d RVdeg1IR=deg1R
3 eqid deg1=deg1
4 eqid Poly1=Poly1
5 00ply1bas =BasePoly1
6 3 4 5 deg1xrf deg1:*
7 ffn deg1:*deg1Fn
8 6 7 ax-mp deg1Fn
9 fn0 deg1Fndeg1=
10 8 9 mpbi deg1=
11 fvprc ¬RVIR=
12 11 fveq2d ¬RVdeg1IR=deg1
13 fvprc ¬RVdeg1R=
14 10 12 13 3eqtr4a ¬RVdeg1IR=deg1R
15 2 14 pm2.61i deg1IR=deg1R
16 15 eqcomi deg1R=deg1IR