Metamath Proof Explorer


Theorem deg1fvi

Description: Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Assertion deg1fvi
|- ( deg1 ` R ) = ( deg1 ` ( _I ` R ) )

Proof

Step Hyp Ref Expression
1 fvi
 |-  ( R e. _V -> ( _I ` R ) = R )
2 1 fveq2d
 |-  ( R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` R ) )
3 eqid
 |-  ( deg1 ` (/) ) = ( deg1 ` (/) )
4 eqid
 |-  ( Poly1 ` (/) ) = ( Poly1 ` (/) )
5 00ply1bas
 |-  (/) = ( Base ` ( Poly1 ` (/) ) )
6 3 4 5 deg1xrf
 |-  ( deg1 ` (/) ) : (/) --> RR*
7 ffn
 |-  ( ( deg1 ` (/) ) : (/) --> RR* -> ( deg1 ` (/) ) Fn (/) )
8 6 7 ax-mp
 |-  ( deg1 ` (/) ) Fn (/)
9 fn0
 |-  ( ( deg1 ` (/) ) Fn (/) <-> ( deg1 ` (/) ) = (/) )
10 8 9 mpbi
 |-  ( deg1 ` (/) ) = (/)
11 fvprc
 |-  ( -. R e. _V -> ( _I ` R ) = (/) )
12 11 fveq2d
 |-  ( -. R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` (/) ) )
13 fvprc
 |-  ( -. R e. _V -> ( deg1 ` R ) = (/) )
14 10 12 13 3eqtr4a
 |-  ( -. R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` R ) )
15 2 14 pm2.61i
 |-  ( deg1 ` ( _I ` R ) ) = ( deg1 ` R )
16 15 eqcomi
 |-  ( deg1 ` R ) = ( deg1 ` ( _I ` R ) )