Step |
Hyp |
Ref |
Expression |
1 |
|
fvi |
|- ( R e. _V -> ( _I ` R ) = R ) |
2 |
1
|
fveq2d |
|- ( R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` R ) ) |
3 |
|
eqid |
|- ( deg1 ` (/) ) = ( deg1 ` (/) ) |
4 |
|
eqid |
|- ( Poly1 ` (/) ) = ( Poly1 ` (/) ) |
5 |
|
00ply1bas |
|- (/) = ( Base ` ( Poly1 ` (/) ) ) |
6 |
3 4 5
|
deg1xrf |
|- ( deg1 ` (/) ) : (/) --> RR* |
7 |
|
ffn |
|- ( ( deg1 ` (/) ) : (/) --> RR* -> ( deg1 ` (/) ) Fn (/) ) |
8 |
6 7
|
ax-mp |
|- ( deg1 ` (/) ) Fn (/) |
9 |
|
fn0 |
|- ( ( deg1 ` (/) ) Fn (/) <-> ( deg1 ` (/) ) = (/) ) |
10 |
8 9
|
mpbi |
|- ( deg1 ` (/) ) = (/) |
11 |
|
fvprc |
|- ( -. R e. _V -> ( _I ` R ) = (/) ) |
12 |
11
|
fveq2d |
|- ( -. R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` (/) ) ) |
13 |
|
fvprc |
|- ( -. R e. _V -> ( deg1 ` R ) = (/) ) |
14 |
10 12 13
|
3eqtr4a |
|- ( -. R e. _V -> ( deg1 ` ( _I ` R ) ) = ( deg1 ` R ) ) |
15 |
2 14
|
pm2.61i |
|- ( deg1 ` ( _I ` R ) ) = ( deg1 ` R ) |
16 |
15
|
eqcomi |
|- ( deg1 ` R ) = ( deg1 ` ( _I ` R ) ) |