| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fvi |
⊢ ( 𝑅 ∈ V → ( I ‘ 𝑅 ) = 𝑅 ) |
| 2 |
1
|
fveq2d |
⊢ ( 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) ) |
| 3 |
|
eqid |
⊢ ( deg1 ‘ ∅ ) = ( deg1 ‘ ∅ ) |
| 4 |
|
eqid |
⊢ ( Poly1 ‘ ∅ ) = ( Poly1 ‘ ∅ ) |
| 5 |
|
00ply1bas |
⊢ ∅ = ( Base ‘ ( Poly1 ‘ ∅ ) ) |
| 6 |
3 4 5
|
deg1xrf |
⊢ ( deg1 ‘ ∅ ) : ∅ ⟶ ℝ* |
| 7 |
|
ffn |
⊢ ( ( deg1 ‘ ∅ ) : ∅ ⟶ ℝ* → ( deg1 ‘ ∅ ) Fn ∅ ) |
| 8 |
6 7
|
ax-mp |
⊢ ( deg1 ‘ ∅ ) Fn ∅ |
| 9 |
|
fn0 |
⊢ ( ( deg1 ‘ ∅ ) Fn ∅ ↔ ( deg1 ‘ ∅ ) = ∅ ) |
| 10 |
8 9
|
mpbi |
⊢ ( deg1 ‘ ∅ ) = ∅ |
| 11 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( I ‘ 𝑅 ) = ∅ ) |
| 12 |
11
|
fveq2d |
⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ ∅ ) ) |
| 13 |
|
fvprc |
⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ 𝑅 ) = ∅ ) |
| 14 |
10 12 13
|
3eqtr4a |
⊢ ( ¬ 𝑅 ∈ V → ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) ) |
| 15 |
2 14
|
pm2.61i |
⊢ ( deg1 ‘ ( I ‘ 𝑅 ) ) = ( deg1 ‘ 𝑅 ) |
| 16 |
15
|
eqcomi |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ ( I ‘ 𝑅 ) ) |