Metamath Proof Explorer


Definition df-bj-arg

Description: Define the argument of a nonzero extended complex number. By convention, it has values in ( -upi , pi ] . Another convention chooses values in [ 0 , 2 _pi ) but the present convention simplifies formulas giving the argument as an arctangent. (Contributed by BJ, 22-Jun-2019) The "else" case of the second conditional operator, corresponding to infinite extended complex numbers other than minfty , gives a definition depending on the specific definition chosen for these numbers ( df-bj-inftyexpitau ), and therefore should not be relied upon. (New usage is discouraged.)

Ref Expression
Assertion df-bj-arg Arg=x0ifxlogxifx<R0π1stx2ππ

Detailed syntax breakdown

Step Hyp Ref Expression
0 carg classArg
1 vx setvarx
2 cccbar class
3 cc0 class0
4 3 csn class0
5 2 4 cdif class0
6 1 cv setvarx
7 cc class
8 6 7 wcel wffx
9 cim class
10 clog classlog
11 6 10 cfv classlogx
12 11 9 cfv classlogx
13 cltxr class<R
14 6 3 13 wbr wffx<R0
15 cpi classπ
16 c1st class1st
17 6 16 cfv class1stx
18 cdiv class÷
19 c2 class2
20 cmul class×
21 19 15 20 co class2π
22 17 21 18 co class1stx2π
23 cmin class
24 22 15 23 co class1stx2ππ
25 14 15 24 cif classifx<R0π1stx2ππ
26 8 12 25 cif classifxlogxifx<R0π1stx2ππ
27 1 5 26 cmpt classx0ifxlogxifx<R0π1stx2ππ
28 0 27 wceq wffArg=x0ifxlogxifx<R0π1stx2ππ