Metamath Proof Explorer


Definition df-bj-mgmhom

Description: Define the set of magma morphisms between two magmas. If domain and codomain are semigroups, monoids, or groups, then one obtains the set of morphisms of these structures. (Contributed by BJ, 10-Feb-2022)

Ref Expression
Assertion df-bj-mgmhom Mgm=xMgm,yMgmfBasexSetBasey|uBasexvBasexfu+xv=fu+yfv

Detailed syntax breakdown

Step Hyp Ref Expression
0 cmgmhom classMgm
1 vx setvarx
2 cmgm classMgm
3 vy setvary
4 vf setvarf
5 cbs classBase
6 1 cv setvarx
7 6 5 cfv classBasex
8 csethom classSet
9 3 cv setvary
10 9 5 cfv classBasey
11 7 10 8 co classBasexSetBasey
12 vu setvaru
13 vv setvarv
14 4 cv setvarf
15 12 cv setvaru
16 cplusg class+𝑔
17 6 16 cfv class+x
18 13 cv setvarv
19 15 18 17 co classu+xv
20 19 14 cfv classfu+xv
21 15 14 cfv classfu
22 9 16 cfv class+y
23 18 14 cfv classfv
24 21 23 22 co classfu+yfv
25 20 24 wceq wfffu+xv=fu+yfv
26 25 13 7 wral wffvBasexfu+xv=fu+yfv
27 26 12 7 wral wffuBasexvBasexfu+xv=fu+yfv
28 27 4 11 crab classfBasexSetBasey|uBasexvBasexfu+xv=fu+yfv
29 1 3 2 2 28 cmpo classxMgm,yMgmfBasexSetBasey|uBasexvBasexfu+xv=fu+yfv
30 0 29 wceq wffMgm=xMgm,yMgmfBasexSetBasey|uBasexvBasexfu+xv=fu+yfv