Metamath Proof Explorer


Definition df-bj-mpt3

Description: Define maps-to notation for functions with three arguments. See df-mpt and df-mpo for functions with one and two arguments respectively. This definition is analogous to bj-dfmpoa . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Assertion df-bj-mpt3 x A , y B , z C D = s t | x A y B z C s = x y z t = D

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvar x
1 cA class A
2 vy setvar y
3 cB class B
4 vz setvar z
5 cC class C
6 cD class D
7 0 2 4 1 3 5 6 cmpt3 class x A , y B , z C D
8 vs setvar s
9 vt setvar t
10 8 cv setvar s
11 0 cv setvar x
12 2 cv setvar y
13 4 cv setvar z
14 11 12 13 cotp class x y z
15 10 14 wceq wff s = x y z
16 9 cv setvar t
17 16 6 wceq wff t = D
18 15 17 wa wff s = x y z t = D
19 18 4 5 wrex wff z C s = x y z t = D
20 19 2 3 wrex wff y B z C s = x y z t = D
21 20 0 1 wrex wff x A y B z C s = x y z t = D
22 21 8 9 copab class s t | x A y B z C s = x y z t = D
23 7 22 wceq wff x A , y B , z C D = s t | x A y B z C s = x y z t = D