Metamath Proof Explorer


Definition df-bj-mpt3

Description: Define maps-to notation for functions with three arguments. See df-mpt and df-mpo for functions with one and two arguments respectively. This definition is analogous to bj-dfmpoa . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Assertion df-bj-mpt3 ( 𝑥𝐴 , 𝑦𝐵 , 𝑧𝐶𝐷 ) = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx 𝑥
1 cA 𝐴
2 vy 𝑦
3 cB 𝐵
4 vz 𝑧
5 cC 𝐶
6 cD 𝐷
7 0 2 4 1 3 5 6 cmpt3 ( 𝑥𝐴 , 𝑦𝐵 , 𝑧𝐶𝐷 )
8 vs 𝑠
9 vt 𝑡
10 8 cv 𝑠
11 0 cv 𝑥
12 2 cv 𝑦
13 4 cv 𝑧
14 11 12 13 cotp 𝑥 , 𝑦 , 𝑧
15 10 14 wceq 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧
16 9 cv 𝑡
17 16 6 wceq 𝑡 = 𝐷
18 15 17 wa ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 )
19 18 4 5 wrex 𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 )
20 19 2 3 wrex 𝑦𝐵𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 )
21 20 0 1 wrex 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 )
22 21 8 9 copab { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 ) }
23 7 22 wceq ( 𝑥𝐴 , 𝑦𝐵 , 𝑧𝐶𝐷 ) = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵𝑧𝐶 ( 𝑠 = ⟨ 𝑥 , 𝑦 , 𝑧 ⟩ ∧ 𝑡 = 𝐷 ) }