Metamath Proof Explorer


Theorem bj-dfmpoa

Description: An equivalent definition of df-mpo . (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-dfmpoa ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) }

Proof

Step Hyp Ref Expression
1 df-mpo ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑡 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) }
2 dfoprab2 { ⟨ ⟨ 𝑥 , 𝑦 ⟩ , 𝑡 ⟩ ∣ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) } = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) }
3 ancom ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ↔ ( 𝑡 = 𝐶 ∧ ( 𝑥𝐴𝑦𝐵 ) ) )
4 3 anbi2i ( ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑡 = 𝐶 ∧ ( 𝑥𝐴𝑦𝐵 ) ) ) )
5 anass ( ( ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) ↔ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( 𝑡 = 𝐶 ∧ ( 𝑥𝐴𝑦𝐵 ) ) ) )
6 an13 ( ( ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ∧ ( 𝑥𝐴𝑦𝐵 ) ) ↔ ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ) )
7 4 5 6 3bitr2i ( ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ) )
8 7 exbii ( ∃ 𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ∃ 𝑦 ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ) )
9 df-rex ( ∃ 𝑦𝐵 ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ↔ ∃ 𝑦 ( 𝑦𝐵 ∧ ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ) )
10 r19.42v ( ∃ 𝑦𝐵 ( 𝑥𝐴 ∧ ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) )
11 8 9 10 3bitr2i ( ∃ 𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) )
12 11 exbii ( ∃ 𝑥𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) )
13 df-rex ( ∃ 𝑥𝐴𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ↔ ∃ 𝑥 ( 𝑥𝐴 ∧ ∃ 𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) ) )
14 12 13 bitr4i ( ∃ 𝑥𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) ↔ ∃ 𝑥𝐴𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) )
15 14 opabbii { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝑦 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ ( ( 𝑥𝐴𝑦𝐵 ) ∧ 𝑡 = 𝐶 ) ) } = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) }
16 1 2 15 3eqtri ( 𝑥𝐴 , 𝑦𝐵𝐶 ) = { ⟨ 𝑠 , 𝑡 ⟩ ∣ ∃ 𝑥𝐴𝑦𝐵 ( 𝑠 = ⟨ 𝑥 , 𝑦 ⟩ ∧ 𝑡 = 𝐶 ) }