Metamath Proof Explorer


Definition df-bj-mpt3

Description: Define maps-to notation for functions with three arguments. See df-mpt and df-mpo for functions with one and two arguments respectively. This definition is analogous to bj-dfmpoa . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Assertion df-bj-mpt3 xA,yB,zCD=st|xAyBzCs=xyzt=D

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 cA classA
2 vy setvary
3 cB classB
4 vz setvarz
5 cC classC
6 cD classD
7 0 2 4 1 3 5 6 cmpt3 classxA,yB,zCD
8 vs setvars
9 vt setvart
10 8 cv setvars
11 0 cv setvarx
12 2 cv setvary
13 4 cv setvarz
14 11 12 13 cotp classxyz
15 10 14 wceq wffs=xyz
16 9 cv setvart
17 16 6 wceq wfft=D
18 15 17 wa wffs=xyzt=D
19 18 4 5 wrex wffzCs=xyzt=D
20 19 2 3 wrex wffyBzCs=xyzt=D
21 20 0 1 wrex wffxAyBzCs=xyzt=D
22 21 8 9 copab classst|xAyBzCs=xyzt=D
23 7 22 wceq wffxA,yB,zCD=st|xAyBzCs=xyzt=D