Metamath Proof Explorer


Definition df-cap

Description: Define the little cap function. See brcap for its value. (Contributed by Scott Fenton, 17-Apr-2014)

Ref Expression
Assertion df-cap βŠ’π–’π–Ίπ—‰=VΓ—VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†1st-1∘E∩2nd-1∘EβŠ—V

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccap class𝖒𝖺𝗉
1 cvv classV
2 1 1 cxp classVΓ—V
3 2 1 cxp classVΓ—VΓ—V
4 cep classE
5 1 4 ctxp classVβŠ—E
6 c1st class1st
7 6 ccnv class1st-1
8 7 4 ccom class1st-1∘E
9 c2nd class2nd
10 9 ccnv class2nd-1
11 10 4 ccom class2nd-1∘E
12 8 11 cin class1st-1∘E∩2nd-1∘E
13 12 1 ctxp class1st-1∘E∩2nd-1∘EβŠ—V
14 5 13 csymdif classVβŠ—Eβˆ†1st-1∘E∩2nd-1∘EβŠ—V
15 14 crn classran⁑VβŠ—Eβˆ†1st-1∘E∩2nd-1∘EβŠ—V
16 3 15 cdif classVΓ—VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†1st-1∘E∩2nd-1∘EβŠ—V
17 0 16 wceq wff𝖒𝖺𝗉=VΓ—VΓ—Vβˆ–ran⁑VβŠ—Eβˆ†1st-1∘E∩2nd-1∘EβŠ—V