Metamath Proof Explorer


Definition df-cbn

Description: Define the class of all complex Banach spaces. (Contributed by NM, 5-Dec-2006) Use df-bn instead. (New usage is discouraged.)

Ref Expression
Assertion df-cbn CBan=uNrmCVec|IndMetuCMetBaseSetu

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccbn classCBan
1 vu setvaru
2 cnv classNrmCVec
3 cims classIndMet
4 1 cv setvaru
5 4 3 cfv classIndMetu
6 ccmet classCMet
7 cba classBaseSet
8 4 7 cfv classBaseSetu
9 8 6 cfv classCMetBaseSetu
10 5 9 wcel wffIndMetuCMetBaseSetu
11 10 1 2 crab classuNrmCVec|IndMetuCMetBaseSetu
12 0 11 wceq wffCBan=uNrmCVec|IndMetuCMetBaseSetu