Metamath Proof Explorer


Definition df-cndprob

Description: Define the conditional probability. (Contributed by Thierry Arnoux, 14-Sep-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion df-cndprob cProb = p Prob a dom p , b dom p p a b p b

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccprob class cProb
1 vp setvar p
2 cprb class Prob
3 va setvar a
4 1 cv setvar p
5 4 cdm class dom p
6 vb setvar b
7 3 cv setvar a
8 6 cv setvar b
9 7 8 cin class a b
10 9 4 cfv class p a b
11 cdiv class ÷
12 8 4 cfv class p b
13 10 12 11 co class p a b p b
14 3 6 5 5 13 cmpo class a dom p , b dom p p a b p b
15 1 2 14 cmpt class p Prob a dom p , b dom p p a b p b
16 0 15 wceq wff cProb = p Prob a dom p , b dom p p a b p b