Metamath Proof Explorer


Theorem cndprobval

Description: The value of the conditional probability , i.e. the probability for the event A , given B , under the probability law P . (Contributed by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobval P Prob A dom P B dom P cProb P A B = P A B P B

Proof

Step Hyp Ref Expression
1 df-ov A cProb P B = cProb P A B
2 df-cndprob cProb = p Prob a dom p , b dom p p a b p b
3 dmeq p = P dom p = dom P
4 fveq1 p = P p a b = P a b
5 fveq1 p = P p b = P b
6 4 5 oveq12d p = P p a b p b = P a b P b
7 3 3 6 mpoeq123dv p = P a dom p , b dom p p a b p b = a dom P , b dom P P a b P b
8 id P Prob P Prob
9 dmexg P Prob dom P V
10 mpoexga dom P V dom P V a dom P , b dom P P a b P b V
11 9 9 10 syl2anc P Prob a dom P , b dom P P a b P b V
12 2 7 8 11 fvmptd3 P Prob cProb P = a dom P , b dom P P a b P b
13 12 3ad2ant1 P Prob A dom P B dom P cProb P = a dom P , b dom P P a b P b
14 simprl P Prob A dom P B dom P a = A b = B a = A
15 simprr P Prob A dom P B dom P a = A b = B b = B
16 14 15 ineq12d P Prob A dom P B dom P a = A b = B a b = A B
17 16 fveq2d P Prob A dom P B dom P a = A b = B P a b = P A B
18 15 fveq2d P Prob A dom P B dom P a = A b = B P b = P B
19 17 18 oveq12d P Prob A dom P B dom P a = A b = B P a b P b = P A B P B
20 simp2 P Prob A dom P B dom P A dom P
21 simp3 P Prob A dom P B dom P B dom P
22 ovexd P Prob A dom P B dom P P A B P B V
23 13 19 20 21 22 ovmpod P Prob A dom P B dom P A cProb P B = P A B P B
24 1 23 eqtr3id P Prob A dom P B dom P cProb P A B = P A B P B