Step |
Hyp |
Ref |
Expression |
1 |
|
df-ov |
⊢ ( 𝐴 ( cprob ‘ 𝑃 ) 𝐵 ) = ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) |
2 |
|
df-cndprob |
⊢ cprob = ( 𝑝 ∈ Prob ↦ ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) ) |
3 |
|
dmeq |
⊢ ( 𝑝 = 𝑃 → dom 𝑝 = dom 𝑃 ) |
4 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) ) |
5 |
|
fveq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ‘ 𝑏 ) = ( 𝑃 ‘ 𝑏 ) ) |
6 |
4 5
|
oveq12d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) = ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) |
7 |
3 3 6
|
mpoeq123dv |
⊢ ( 𝑝 = 𝑃 → ( 𝑎 ∈ dom 𝑝 , 𝑏 ∈ dom 𝑝 ↦ ( ( 𝑝 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑝 ‘ 𝑏 ) ) ) = ( 𝑎 ∈ dom 𝑃 , 𝑏 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) ) |
8 |
|
id |
⊢ ( 𝑃 ∈ Prob → 𝑃 ∈ Prob ) |
9 |
|
dmexg |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ V ) |
10 |
|
mpoexga |
⊢ ( ( dom 𝑃 ∈ V ∧ dom 𝑃 ∈ V ) → ( 𝑎 ∈ dom 𝑃 , 𝑏 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) ∈ V ) |
11 |
9 9 10
|
syl2anc |
⊢ ( 𝑃 ∈ Prob → ( 𝑎 ∈ dom 𝑃 , 𝑏 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) ∈ V ) |
12 |
2 7 8 11
|
fvmptd3 |
⊢ ( 𝑃 ∈ Prob → ( cprob ‘ 𝑃 ) = ( 𝑎 ∈ dom 𝑃 , 𝑏 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) ) |
13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( cprob ‘ 𝑃 ) = ( 𝑎 ∈ dom 𝑃 , 𝑏 ∈ dom 𝑃 ↦ ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) ) ) |
14 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → 𝑎 = 𝐴 ) |
15 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → 𝑏 = 𝐵 ) |
16 |
14 15
|
ineq12d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑎 ∩ 𝑏 ) = ( 𝐴 ∩ 𝐵 ) ) |
17 |
16
|
fveq2d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
18 |
15
|
fveq2d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( 𝑃 ‘ 𝑏 ) = ( 𝑃 ‘ 𝐵 ) ) |
19 |
17 18
|
oveq12d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ) → ( ( 𝑃 ‘ ( 𝑎 ∩ 𝑏 ) ) / ( 𝑃 ‘ 𝑏 ) ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
20 |
|
simp2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → 𝐴 ∈ dom 𝑃 ) |
21 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → 𝐵 ∈ dom 𝑃 ) |
22 |
|
ovexd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ∈ V ) |
23 |
13 19 20 21 22
|
ovmpod |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ( cprob ‘ 𝑃 ) 𝐵 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
24 |
1 23
|
eqtr3id |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |