Step |
Hyp |
Ref |
Expression |
1 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
2 |
1
|
oveq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) ) |
4 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
5 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → 𝑃 ∈ Prob ) |
6 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
7 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
8 |
6 7
|
syl3an1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
9 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
11 |
4 10
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
13 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
14 |
13
|
3adant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
15 |
4 14
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℂ ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℂ ) |
17 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ≠ 0 ) |
18 |
12 16 17
|
divcan1d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
19 |
3 18
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |