| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) = ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) ) |
| 2 |
1
|
oveq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) ) |
| 3 |
2
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) ) |
| 4 |
|
unitsscn |
⊢ ( 0 [,] 1 ) ⊆ ℂ |
| 5 |
|
simp1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → 𝑃 ∈ Prob ) |
| 6 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 7 |
|
inelsiga |
⊢ ( ( dom 𝑃 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
| 8 |
6 7
|
syl3an1 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) |
| 9 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ ( 𝐴 ∩ 𝐵 ) ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 10 |
5 8 9
|
syl2anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ( 0 [,] 1 ) ) |
| 11 |
4 10
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 12 |
11
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ∈ ℂ ) |
| 13 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
| 14 |
13
|
3adant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ( 0 [,] 1 ) ) |
| 15 |
4 14
|
sselid |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℂ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ∈ ℂ ) |
| 17 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( 𝑃 ‘ 𝐵 ) ≠ 0 ) |
| 18 |
12 16 17
|
divcan1d |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) / ( 𝑃 ‘ 𝐵 ) ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |
| 19 |
3 18
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ 𝐵 ∈ dom 𝑃 ) ∧ ( 𝑃 ‘ 𝐵 ) ≠ 0 ) → ( ( ( cprob ‘ 𝑃 ) ‘ 〈 𝐴 , 𝐵 〉 ) · ( 𝑃 ‘ 𝐵 ) ) = ( 𝑃 ‘ ( 𝐴 ∩ 𝐵 ) ) ) |