Step |
Hyp |
Ref |
Expression |
1 |
|
cndprobval |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( cprob ` P ) ` <. A , B >. ) = ( ( P ` ( A i^i B ) ) / ( P ` B ) ) ) |
2 |
1
|
oveq1d |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( ( ( P ` ( A i^i B ) ) / ( P ` B ) ) x. ( P ` B ) ) ) |
3 |
2
|
adantr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( ( ( P ` ( A i^i B ) ) / ( P ` B ) ) x. ( P ` B ) ) ) |
4 |
|
unitsscn |
|- ( 0 [,] 1 ) C_ CC |
5 |
|
simp1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> P e. Prob ) |
6 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
7 |
|
inelsiga |
|- ( ( dom P e. U. ran sigAlgebra /\ A e. dom P /\ B e. dom P ) -> ( A i^i B ) e. dom P ) |
8 |
6 7
|
syl3an1 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( A i^i B ) e. dom P ) |
9 |
|
prob01 |
|- ( ( P e. Prob /\ ( A i^i B ) e. dom P ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
10 |
5 8 9
|
syl2anc |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A i^i B ) ) e. ( 0 [,] 1 ) ) |
11 |
4 10
|
sselid |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` ( A i^i B ) ) e. CC ) |
12 |
11
|
adantr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` ( A i^i B ) ) e. CC ) |
13 |
|
prob01 |
|- ( ( P e. Prob /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
14 |
13
|
3adant2 |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` B ) e. ( 0 [,] 1 ) ) |
15 |
4 14
|
sselid |
|- ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) -> ( P ` B ) e. CC ) |
16 |
15
|
adantr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` B ) e. CC ) |
17 |
|
simpr |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( P ` B ) =/= 0 ) |
18 |
12 16 17
|
divcan1d |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( ( P ` ( A i^i B ) ) / ( P ` B ) ) x. ( P ` B ) ) = ( P ` ( A i^i B ) ) ) |
19 |
3 18
|
eqtrd |
|- ( ( ( P e. Prob /\ A e. dom P /\ B e. dom P ) /\ ( P ` B ) =/= 0 ) -> ( ( ( cprob ` P ) ` <. A , B >. ) x. ( P ` B ) ) = ( P ` ( A i^i B ) ) ) |