| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cndprobval |
|
| 2 |
1
|
oveq1d |
|
| 3 |
2
|
adantr |
|
| 4 |
|
unitsscn |
|
| 5 |
|
simp1 |
|
| 6 |
|
domprobsiga |
|
| 7 |
|
inelsiga |
|
| 8 |
6 7
|
syl3an1 |
|
| 9 |
|
prob01 |
|
| 10 |
5 8 9
|
syl2anc |
|
| 11 |
4 10
|
sselid |
|
| 12 |
11
|
adantr |
|
| 13 |
|
prob01 |
|
| 14 |
13
|
3adant2 |
|
| 15 |
4 14
|
sselid |
|
| 16 |
15
|
adantr |
|
| 17 |
|
simpr |
|
| 18 |
12 16 17
|
divcan1d |
|
| 19 |
3 18
|
eqtrd |
|