Metamath Proof Explorer


Theorem cndprob01

Description: The conditional probability has values in [ 0 , 1 ] . (Contributed by Thierry Arnoux, 13-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprob01 P Prob A dom P B dom P P B 0 cProb P A B 0 1

Proof

Step Hyp Ref Expression
1 cndprobval P Prob A dom P B dom P cProb P A B = P A B P B
2 1 adantr P Prob A dom P B dom P P B 0 cProb P A B = P A B P B
3 simpl1 P Prob A dom P B dom P P B 0 P Prob
4 domprobmeas P Prob P measures dom P
5 3 4 syl P Prob A dom P B dom P P B 0 P measures dom P
6 domprobsiga P Prob dom P ran sigAlgebra
7 3 6 syl P Prob A dom P B dom P P B 0 dom P ran sigAlgebra
8 simpl2 P Prob A dom P B dom P P B 0 A dom P
9 simpl3 P Prob A dom P B dom P P B 0 B dom P
10 inelsiga dom P ran sigAlgebra A dom P B dom P A B dom P
11 7 8 9 10 syl3anc P Prob A dom P B dom P P B 0 A B dom P
12 inss2 A B B
13 12 a1i P Prob A dom P B dom P P B 0 A B B
14 5 11 9 13 measssd P Prob A dom P B dom P P B 0 P A B P B
15 prob01 P Prob A B dom P P A B 0 1
16 3 11 15 syl2anc P Prob A dom P B dom P P B 0 P A B 0 1
17 prob01 P Prob B dom P P B 0 1
18 3 9 17 syl2anc P Prob A dom P B dom P P B 0 P B 0 1
19 simpr P Prob A dom P B dom P P B 0 P B 0
20 unitdivcld P A B 0 1 P B 0 1 P B 0 P A B P B P A B P B 0 1
21 16 18 19 20 syl3anc P Prob A dom P B dom P P B 0 P A B P B P A B P B 0 1
22 14 21 mpbid P Prob A dom P B dom P P B 0 P A B P B 0 1
23 2 22 eqeltrd P Prob A dom P B dom P P B 0 cProb P A B 0 1