Metamath Proof Explorer


Theorem cndprobtot

Description: The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobtot PProbAdomPPA0cProbPdomPA=1

Proof

Step Hyp Ref Expression
1 simpl PProbAdomPPProb
2 1 unveldomd PProbAdomPdomPdomP
3 simpr PProbAdomPAdomP
4 cndprobval PProbdomPdomPAdomPcProbPdomPA=PdomPAPA
5 1 2 3 4 syl3anc PProbAdomPcProbPdomPA=PdomPAPA
6 5 3adant3 PProbAdomPPA0cProbPdomPA=PdomPAPA
7 elssuni AdomPAdomP
8 7 3ad2ant2 PProbAdomPPA0AdomP
9 sseqin2 AdomPdomPA=A
10 8 9 sylib PProbAdomPPA0domPA=A
11 10 fveq2d PProbAdomPPA0PdomPA=PA
12 11 oveq1d PProbAdomPPA0PdomPAPA=PAPA
13 prob01 PProbAdomPPA01
14 13 3adant3 PProbAdomPPA0PA01
15 elunitcn PA01PA
16 14 15 syl PProbAdomPPA0PA
17 simp3 PProbAdomPPA0PA0
18 16 17 dividd PProbAdomPPA0PAPA=1
19 6 12 18 3eqtrd PProbAdomPPA0cProbPdomPA=1