Metamath Proof Explorer


Theorem cndprobtot

Description: The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobtot P Prob A dom P P A 0 cProb P dom P A = 1

Proof

Step Hyp Ref Expression
1 simpl P Prob A dom P P Prob
2 1 unveldomd P Prob A dom P dom P dom P
3 simpr P Prob A dom P A dom P
4 cndprobval P Prob dom P dom P A dom P cProb P dom P A = P dom P A P A
5 1 2 3 4 syl3anc P Prob A dom P cProb P dom P A = P dom P A P A
6 5 3adant3 P Prob A dom P P A 0 cProb P dom P A = P dom P A P A
7 elssuni A dom P A dom P
8 7 3ad2ant2 P Prob A dom P P A 0 A dom P
9 sseqin2 A dom P dom P A = A
10 8 9 sylib P Prob A dom P P A 0 dom P A = A
11 10 fveq2d P Prob A dom P P A 0 P dom P A = P A
12 11 oveq1d P Prob A dom P P A 0 P dom P A P A = P A P A
13 prob01 P Prob A dom P P A 0 1
14 13 3adant3 P Prob A dom P P A 0 P A 0 1
15 elunitcn P A 0 1 P A
16 14 15 syl P Prob A dom P P A 0 P A
17 simp3 P Prob A dom P P A 0 P A 0
18 16 17 dividd P Prob A dom P P A 0 P A P A = 1
19 6 12 18 3eqtrd P Prob A dom P P A 0 cProb P dom P A = 1