Metamath Proof Explorer


Theorem cndprobtot

Description: The conditional probability given a certain event is one. (Contributed by Thierry Arnoux, 20-Dec-2016) (Revised by Thierry Arnoux, 21-Jan-2017)

Ref Expression
Assertion cndprobtot ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ ⟨ dom 𝑃 , 𝐴 ⟩ ) = 1 )

Proof

Step Hyp Ref Expression
1 simpl ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝑃 ∈ Prob )
2 1 unveldomd ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → dom 𝑃 ∈ dom 𝑃 )
3 simpr ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝐴 ∈ dom 𝑃 )
4 cndprobval ( ( 𝑃 ∈ Prob ∧ dom 𝑃 ∈ dom 𝑃𝐴 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ ⟨ dom 𝑃 , 𝐴 ⟩ ) = ( ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) / ( 𝑃𝐴 ) ) )
5 1 2 3 4 syl3anc ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ ⟨ dom 𝑃 , 𝐴 ⟩ ) = ( ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) / ( 𝑃𝐴 ) ) )
6 5 3adant3 ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ ⟨ dom 𝑃 , 𝐴 ⟩ ) = ( ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) / ( 𝑃𝐴 ) ) )
7 elssuni ( 𝐴 ∈ dom 𝑃𝐴 dom 𝑃 )
8 7 3ad2ant2 ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → 𝐴 dom 𝑃 )
9 sseqin2 ( 𝐴 dom 𝑃 ↔ ( dom 𝑃𝐴 ) = 𝐴 )
10 8 9 sylib ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( dom 𝑃𝐴 ) = 𝐴 )
11 10 fveq2d ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) = ( 𝑃𝐴 ) )
12 11 oveq1d ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ ( dom 𝑃𝐴 ) ) / ( 𝑃𝐴 ) ) = ( ( 𝑃𝐴 ) / ( 𝑃𝐴 ) ) )
13 prob01 ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃𝐴 ) ∈ ( 0 [,] 1 ) )
14 13 3adant3 ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( 𝑃𝐴 ) ∈ ( 0 [,] 1 ) )
15 elunitcn ( ( 𝑃𝐴 ) ∈ ( 0 [,] 1 ) → ( 𝑃𝐴 ) ∈ ℂ )
16 14 15 syl ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( 𝑃𝐴 ) ∈ ℂ )
17 simp3 ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( 𝑃𝐴 ) ≠ 0 )
18 16 17 dividd ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( ( 𝑃𝐴 ) / ( 𝑃𝐴 ) ) = 1 )
19 6 12 18 3eqtrd ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ ⟨ dom 𝑃 , 𝐴 ⟩ ) = 1 )