Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝑃 ∈ Prob ) |
2 |
1
|
unveldomd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ∪ dom 𝑃 ∈ dom 𝑃 ) |
3 |
|
simpr |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → 𝐴 ∈ dom 𝑃 ) |
4 |
|
cndprobval |
⊢ ( ( 𝑃 ∈ Prob ∧ ∪ dom 𝑃 ∈ dom 𝑃 ∧ 𝐴 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∪ dom 𝑃 , 𝐴 〉 ) = ( ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) ) |
5 |
1 2 3 4
|
syl3anc |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∪ dom 𝑃 , 𝐴 〉 ) = ( ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∪ dom 𝑃 , 𝐴 〉 ) = ( ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) ) |
7 |
|
elssuni |
⊢ ( 𝐴 ∈ dom 𝑃 → 𝐴 ⊆ ∪ dom 𝑃 ) |
8 |
7
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → 𝐴 ⊆ ∪ dom 𝑃 ) |
9 |
|
sseqin2 |
⊢ ( 𝐴 ⊆ ∪ dom 𝑃 ↔ ( ∪ dom 𝑃 ∩ 𝐴 ) = 𝐴 ) |
10 |
8 9
|
sylib |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ∪ dom 𝑃 ∩ 𝐴 ) = 𝐴 ) |
11 |
10
|
fveq2d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) = ( 𝑃 ‘ 𝐴 ) ) |
12 |
11
|
oveq1d |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ ( ∪ dom 𝑃 ∩ 𝐴 ) ) / ( 𝑃 ‘ 𝐴 ) ) = ( ( 𝑃 ‘ 𝐴 ) / ( 𝑃 ‘ 𝐴 ) ) ) |
13 |
|
prob01 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) ) |
15 |
|
elunitcn |
⊢ ( ( 𝑃 ‘ 𝐴 ) ∈ ( 0 [,] 1 ) → ( 𝑃 ‘ 𝐴 ) ∈ ℂ ) |
16 |
14 15
|
syl |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ∈ ℂ ) |
17 |
|
simp3 |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( 𝑃 ‘ 𝐴 ) ≠ 0 ) |
18 |
16 17
|
dividd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( 𝑃 ‘ 𝐴 ) / ( 𝑃 ‘ 𝐴 ) ) = 1 ) |
19 |
6 12 18
|
3eqtrd |
⊢ ( ( 𝑃 ∈ Prob ∧ 𝐴 ∈ dom 𝑃 ∧ ( 𝑃 ‘ 𝐴 ) ≠ 0 ) → ( ( cprob ‘ 𝑃 ) ‘ 〈 ∪ dom 𝑃 , 𝐴 〉 ) = 1 ) |