Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( P e. Prob /\ A e. dom P ) -> P e. Prob ) |
2 |
1
|
unveldomd |
|- ( ( P e. Prob /\ A e. dom P ) -> U. dom P e. dom P ) |
3 |
|
simpr |
|- ( ( P e. Prob /\ A e. dom P ) -> A e. dom P ) |
4 |
|
cndprobval |
|- ( ( P e. Prob /\ U. dom P e. dom P /\ A e. dom P ) -> ( ( cprob ` P ) ` <. U. dom P , A >. ) = ( ( P ` ( U. dom P i^i A ) ) / ( P ` A ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( P e. Prob /\ A e. dom P ) -> ( ( cprob ` P ) ` <. U. dom P , A >. ) = ( ( P ` ( U. dom P i^i A ) ) / ( P ` A ) ) ) |
6 |
5
|
3adant3 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( cprob ` P ) ` <. U. dom P , A >. ) = ( ( P ` ( U. dom P i^i A ) ) / ( P ` A ) ) ) |
7 |
|
elssuni |
|- ( A e. dom P -> A C_ U. dom P ) |
8 |
7
|
3ad2ant2 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> A C_ U. dom P ) |
9 |
|
sseqin2 |
|- ( A C_ U. dom P <-> ( U. dom P i^i A ) = A ) |
10 |
8 9
|
sylib |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( U. dom P i^i A ) = A ) |
11 |
10
|
fveq2d |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` ( U. dom P i^i A ) ) = ( P ` A ) ) |
12 |
11
|
oveq1d |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( P ` ( U. dom P i^i A ) ) / ( P ` A ) ) = ( ( P ` A ) / ( P ` A ) ) ) |
13 |
|
prob01 |
|- ( ( P e. Prob /\ A e. dom P ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
14 |
13
|
3adant3 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
15 |
|
elunitcn |
|- ( ( P ` A ) e. ( 0 [,] 1 ) -> ( P ` A ) e. CC ) |
16 |
14 15
|
syl |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) e. CC ) |
17 |
|
simp3 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) =/= 0 ) |
18 |
16 17
|
dividd |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( P ` A ) / ( P ` A ) ) = 1 ) |
19 |
6 12 18
|
3eqtrd |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( cprob ` P ) ` <. U. dom P , A >. ) = 1 ) |