Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> P e. Prob ) |
2 |
|
nuleldmp |
|- ( P e. Prob -> (/) e. dom P ) |
3 |
1 2
|
syl |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> (/) e. dom P ) |
4 |
|
simp2 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> A e. dom P ) |
5 |
|
cndprobval |
|- ( ( P e. Prob /\ (/) e. dom P /\ A e. dom P ) -> ( ( cprob ` P ) ` <. (/) , A >. ) = ( ( P ` ( (/) i^i A ) ) / ( P ` A ) ) ) |
6 |
1 3 4 5
|
syl3anc |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( cprob ` P ) ` <. (/) , A >. ) = ( ( P ` ( (/) i^i A ) ) / ( P ` A ) ) ) |
7 |
|
0in |
|- ( (/) i^i A ) = (/) |
8 |
7
|
fveq2i |
|- ( P ` ( (/) i^i A ) ) = ( P ` (/) ) |
9 |
8
|
oveq1i |
|- ( ( P ` ( (/) i^i A ) ) / ( P ` A ) ) = ( ( P ` (/) ) / ( P ` A ) ) |
10 |
9
|
a1i |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( P ` ( (/) i^i A ) ) / ( P ` A ) ) = ( ( P ` (/) ) / ( P ` A ) ) ) |
11 |
|
probnul |
|- ( P e. Prob -> ( P ` (/) ) = 0 ) |
12 |
1 11
|
syl |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` (/) ) = 0 ) |
13 |
12
|
oveq1d |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( P ` (/) ) / ( P ` A ) ) = ( 0 / ( P ` A ) ) ) |
14 |
|
prob01 |
|- ( ( P e. Prob /\ A e. dom P ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
15 |
14
|
3adant3 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) e. ( 0 [,] 1 ) ) |
16 |
|
elunitcn |
|- ( ( P ` A ) e. ( 0 [,] 1 ) -> ( P ` A ) e. CC ) |
17 |
15 16
|
syl |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) e. CC ) |
18 |
|
simp3 |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( P ` A ) =/= 0 ) |
19 |
17 18
|
div0d |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( 0 / ( P ` A ) ) = 0 ) |
20 |
10 13 19
|
3eqtrd |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( P ` ( (/) i^i A ) ) / ( P ` A ) ) = 0 ) |
21 |
6 20
|
eqtrd |
|- ( ( P e. Prob /\ A e. dom P /\ ( P ` A ) =/= 0 ) -> ( ( cprob ` P ) ` <. (/) , A >. ) = 0 ) |